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Motivation

* Network 1n the era of Exascale computing and MSN vs ICN
* Remains as a bottleneck in high performance computing

* [s transitioning from custom HW to commodity HW

* Pulling high-performance out of commodity HW
* Imperative in the time of NFV and SDN
* NetMap, PacketShader, CuckwooSwitch, ...
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Key Software Enablers

* For custom HW to commodity HW transition
* Userspace I/O (No kernel-user level copies)
e Resource pooling (batching at all stages)

 Compartmentalized allocation
(NUMA local threads and memory use)

* Remaining challenges
* Network packet processing is not uniform
* Workload varies depending on Network Functions (NFs)
* Accelerators add extra cycles needed: GPUs, Intel Xeon Phis
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Intel Xeon Phi

* Knights Ferry — Knights Corner — Knights Landing — Knights Hill
 Many Integrated Core Architecture — 60 cores, 1.053 GHz, 4 HTs

* |Instruction level vectorization — 16 INTs in single cycle throughput
* On-board 8GB GDDR5 RAM (doubles as disk)

e 2 simultaneous instructions per cycle (1 vector, 1 scalar)
Loss if not running at least 2 concurrent threads per core

e Runs its own Linux pOS. Can run its own code.
Unprecedented level of transparency in accelerator community

* Currently positioned as accelerator for scientific computing
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Intel Xeon Phi
for

High-Speed Packet Processing?
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Performance Metrics of Interest

* Latency and throughput

* Following measures are critical
* Integer operation throughput
=> Back-of-envelope calculation concludes viable
* Random memory access
—For address loookups
—Comparable to CPUs, but far worse than GPUs
* Thread synchronization overhead
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Synchronization Cost vs # Cores
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Knapp

* Knight’s Corner as a Packet Processing framework

* Host-side of Knapp
* Uses Intel DPDK for packet 10

* One core per NUMA node for device comm

* Device-side of Knapp
* vDevice partitions cores on the device

* Each vDevice 1s associated with a packet processing
application and two SCIF channels (control/data)
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Knapp Architecture

KAIST

Xeon Phi
vDevice 1 vDevice D
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[ Master Thread ] - [ Master Thread ]
1 DMA !
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NIC \7[ /O Thread 1 < NIC
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C = #1/0 threads
D = # vDevices on Xeon Phi
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Control Flow of vDevice Pipeline

KAIST
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Evaluation Configuration

1x Intel Xeon E5-2670

CPU Sandy Bridge, octa-core 2.6 GHz

RAM 32 GB

NIC 2x Intel 82599ES
dual-port 10GbE, total 40 Gbps
1x Intel Xeon Ph1 5110P

MIC 60 1.053 GHz Atom cores, 8 GB RAM, 320 GB.s,
PCle 2.0
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Packet Forwarding Latency
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Packet Forwading Throughput: IPv4
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Packet Forwading Throughput: IPv6
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Core Scalability 1n vDevice:
Case Study of Vectorized IPv6
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Conclusions and Future Work

e Intel Xeon Phi feasible as an accelerator

* Remaining challenges: manual vectorization to extract most
out of Xeon Phi architecture

* Knight’s Landing as a stand-alone processor work well

e Future Work

* Explore the implementation behind Peer Direct™/GPU Direct
(P2P DMA technology among PCle devices)

 Add GPU-like Xeon Phi daemon interface to NBA
* Extend to other common router apps (IPSec, NAT, IPv6)
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Q&A
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