

HiPINEB

February 5, 2017



Bill Dally

Chief Scientist and SVP Research, NVIDIA Corporation

Professor, Stanford University

## Acknowledgement

This talk presents the work of the NVIDIA Network Research Group

Larry Dennison (Director)

Nir Arad

Matt Blumrich

Hans Eberle

Ted Jiang

Alex Ishii (DGX Product Group)

#### Outline

- Desiderata Exascale network requirements
  - Efficient fine-grain communication, cost effective bandwidth, resilience
- Topology Engineering to optimize available technology
- Routing
- Flow control and congestion avoidance
- Error control
- Ordering
- The role of photonics
- System sketch



# **Some History**

MARS Router 1984



Torus Routing Chip 1985



Network Design Frame 1988



Reliable Router 1994



J-Machine 1992



Cray T3D 1992





Cray Black Widow 2006

#### **Trend Line**



# NVIDIA DGX-1 WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER



170 TFLOPS

8x Tesla P100 16GB

**NVLink Hybrid Cube Mesh** 

Optimized Deep Learning Software

**Dual Xeon** 

7 TB SSD Deep Learning Cache

Dual 10GbE, Quad IB 100Gb

3RU - 3200W

#### NVLINK - Enables Fast Interconnect, PGAS Memory







#### **DGX SATURNV**

World's Most Efficient Al Supercomputer





#### Fastest Al Supercomputer in TOP500

4.9 Petaflops Peak FP64 Performance 19.6 Petaflops DL FP16 Performance 124 NVIDIA DGX-1 Server Nodes



#### Most Energy Efficient Supercomputer

#1 on Green500 List9.5 GFLOPS per Watt2x More Efficient than Xeon Phi System

13 DGX-1 Servers in Top500

**FACTOIDS** 

38 DGX-1 Servers for Petascale supercomputer

55x less servers, 12x less power vs CPU-only supercomputer of similar performance

# Desiderata

# Exascale System Sketch



#### Desiderata

- Scale 10<sup>5</sup> endpoints
- Cost-effective bandwidth (injection and bisection) B/s\$
- Low latency (dominated by time-of-flight)
- Reliable exactly-once delivery (BER < 10<sup>-21</sup>)
- Low overhead (latency and occupancy)

- Enable strong scaling
- Low-overhead shared-memory operations
- Highly concurrent operation

# Scale - ~10<sup>5</sup> Powerful Endpoints



- Each endpoint is a 16.4TFLOPS (DP) GPU with 4TB/s memory bandwidth
- 400GB/s injection bandwidth is 10:1 local memory to neighbor memory
  - Pascal GP100 today is ~5:1 (750GB/s memory: 160GB/s NVLINK)

# Cost-Efficient Bandwidth (B/s\$)

- Network cost dominated by links (AOCs)
- Use minimum number of expensive links per route (1 dragonfly)
- Operate each link near capacity (flow-control and congestion avoidance)
- Make payload a high fraction of bits on the wire
  - For small payloads (16B) as well as large

#### The Need for PGAS





#### Remote Load/Store



## ~10<sup>5</sup> Outstanding References per Endpoint



# Topology

#### Cost of 100Gb/s







\$500

\$50

\$10

\$5

100m

5m

1m

0.3m

# **Dragonfly Topology**



Kim, J., et al. "Technology-Driven, Highly-Scalable Dragonfly Topology." ISCA 2008

# **Adaptive Routing**

## **Sources of Congestion**

#### Fabric congestion



- Cause: low bisection bandwidth or load imbalance
- Solution: add bandwidth, improve load-balance using adaptive routing

#### **Endpoint congestion**

Cause: endpoint bandwidth over-subscription



- Solution: reduce bandwidth demand by throttling traffic sources

# Progressive Adaptive Routing with Local misroute



Singh, A., 2005. Load-balanced routing in interconnection networks (Doctoral dissertation, Stanford University).

Jiang, Nan, William J. Dally, and John Kim. "Indirect Adaptive Routing on Large Scale Interconnection Networks." *ISCA* 2009







# Congestion Avoidance LHRP

#### **Congestion Notification**

150GB/s \* 3us RTT = 450 KB inflight before first notification

Reaction is too late, slow response time, large transient



# **Last-Hop Reservation Protocol**

Observation: preserve ejection channel bandwidth for data packets

Move the endpoint reservation scheduler to the last-hop switch

Messages are first transmitted speculatively

No congestion: speculative messages will arrive successfully

With congestion: speculative message is dropped by the last-hop switch, reservation is sent back with the nack



Jiang, Nan, Larry Dennison, and William J. Dally. "Network endpoint congestion control for fine-grained communication." SC, 2015.



#### **Initial Congestion Response**

40% uniform random + 60:4 Hotspot @ 20us - 4 flits/message



#### Impact of Congestion on Network Performance

1024-rank BIGFFT MPI trace on 2.5K-node dragonfly



#### Impact of Congestion Interference on Network Operations

1024-rank MPI\_Allreduce + 1024-rank BIGFFT on 2.5K-node dragonfly



# Interference, An Open Problem

#### Interference



#### **Performance Variability**

FUTURE TECHNOLOGIES GROUP

- Performance is highly variable at scale on Edison (Dragonfly)
- Actively investigating the cause with NERSC/Cray.
- Figure to the right shows the individual solves times obtained when solving
  - the exact same problem
  - always using 4K sockets (and 32K cores)
  - with the same decomposition
  - within a single aprun (while loop in single execution)
- Average performance is 33% lower than best



Sam Williams Designforward Tech Talk July 2014

#### **ADAPTIVE ROUTING**

Source Group

- Minimal routing is insufficient for all traffic patterns
  - Two switches shares a single local channel
  - Two groups shares a single global channel
- Utilize non-minimal network paths
  - "Bounce" off of a random intermediate switch/group
  - Creates resource sharing
  - Source of interference





# **Adaptive Routing Interference**



# **Bandwidth Partitioning**

- Multiple applications running on a network each in a partition
- Each partition
  - Monitor the fraction of intra-partition adaptive traffic on the global links
  - Adjust the adaptive routing bias to maintain 50% fraction
  - Simpler alternative to physically partitioning network
- Partitions are not perfectly isolated
  - Subject to transient traffic variations
  - Adaptive routing reaction time



# **Error Control**

#### **Error Control Problem**

- ~10<sup>6</sup> links in an Exascale system
- Bandwidth of 2 x  $10^{11}$  b/s each (total bandwidth of ~ $10^{17}$  b/s)
- Bit error rate of 10<sup>-4</sup> to 10<sup>-12</sup> (total error rate of 10<sup>5</sup>-10<sup>13</sup> errors/s)
- System wide error rate of 10<sup>-4</sup> errors/s (1 week MTBF)
- Spec network error rate at 10<sup>-5</sup> errors/s (order of magnitude less)
- Requires bit error rate of 10<sup>-22</sup>

# Layers of hardware protection



## Channel vs packet protocol





# Ordering

### Ordered Transfer Protocol

Lightweight Connection with Low-Overhead Setup and Teardown



# Synchronized Bulk Transfer

Strict Ordering is not Required for many Producer/Consumer Exchanges



# The Role of Photonics

## Power/Bandwidth Density



200 lambdas @ 8Gb/s

146 lambdas @ 13Gb/s

M. Bahadori, R. Polster, S. Rumley, Y. Thonnart, J.-L. Gonzalez-Jimenez, K. Bergman, "Energy-Bandwidth Design Exploration of Silicon Photonic Interconnects in 65nm CMOS," IEEE Optical Interconnects Conference (OI) (May 2016)

# Photonic Dragonfly Concept



- 256 Groups
- 16 Fiber Bundles per group
- 16n wavelengths per fiber
- 16 Central AWGRs
- Much simpler cable management
- Technology not sufficiently mature for Exascale (2021)
  - Maybe by 2025

# Overall System Sketch

### **Recall Costs**







\$500

\$50

\$10

\$5

100m

5m

1m

0.3m



#### Cabinet

- 128 GPUs, 50kW
- 16 GPU x 8 switch boards
- 400GB/s bidir per GPU
  - 3.2TB/s per board
- 192 switches
  - 8 per board
- Flat bandwidth on board
- 100GB/s at crosspoints
  - 32 pairs
  - 12.8TB/s aggregate
- 100GB/s per GPU within cabinet
- All connections electrical



#### Group

- 1 or 2 cabinets
- Electrical Flex cables between cabinets
- 12.8TB/s between cabinets
  - 512 NVLinks
  - 4096 pairs
  - 64 cables, 64 pairs each
- 256 NVLinks out back of each cabinet - 2 per GPU
  - 50GB/s per GPU global bandwidth
  - 6.4TB/s per cabinet
- Up to 513 groups
  - 131,328 GPUs

## System Sketch

- Cost dominated by AOCs 50GB/s per GPU \$2K per endpoint
- Taper by leaving half the cables out 25GB/s global bandwidth per GPU
  - Limits maximum system size to 64k GPUs
- Routing progressive adaptive routing with local misroute (6VCs per class)
- Flow control flit-level flow control with LHRP
- Error control
  - Channel-level CRC for link
  - Packet-level CRC for ETE
  - FEC for optical cables only (where needed)
- Ordering per packet or bulk sync
- PGAS support, with two-stage address translation

# Conclusion

#### Conclusion

- An Exascale network is not business as usual
- Need fine-grain communication (PGAS) for strong scaling
  - Two-stage address translation
  - 10<sup>5</sup> outstanding references per endpoint
  - Ordering as needed
- Cost-efficient bandwidth
  - Topology driven by communication cost Dragonfly
  - High payload efficiency for small packets (32B)
  - Congestion avoidance & adaptive routing allows links to operate near capacity
- Error control
  - Channel-level, not packet-level CRC
- System sketch
  - 8:2:1 Board:Cabinet:Global bandwidth taper
  - Cost is dominated by AOCs



# Backup - Not in main Talk

| 0 |   |     | ) ( | ) ( | 0   |   |   |   |   |   |   |   |   |   |     |
|---|---|-----|-----|-----|-----|---|---|---|---|---|---|---|---|---|-----|
| 0 |   | ) ( | ) ( | ) ( | ) ( |   |   |   |   | 0 | 0 | 0 | 0 |   | ) ( |
| 0 |   | •   | ) ( | ) ( | 0   |   | 0 | 0 |   | 0 | 0 | 0 |   |   |     |
| 0 |   |     | 0   |     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |     |
| 0 | 0 |     | 0   |     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |     |
| 0 | 0 |     |     |     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |     |
| 0 | 0 |     |     |     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |     |
| 0 | 0 |     |     |     |     | 0 | 0 | 0 |   |   | 0 | 0 |   | 0 |     |
| D | 0 | 0   |     | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |     |
| ٠ | 0 | 0   | 0   | 0   | 0   | 0 | 0 | 0 |   | 0 | 0 | 0 | 0 | 0 | 0   |
| 9 | 0 | 0   | 0   | 0   | 0   | 0 | 0 | 0 | 0 |   | 0 | 0 | 0 | 0 | 0   |
|   | 0 | 0   |     | 0   |     | 0 |   |   |   | 0 | 0 | 0 | 0 | 0 | 0   |
| ) | 0 | 0   | 0   | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
|   |   |     |     |     | 0   |   |   |   |   |   |   |   |   |   |     |
|   | _ | _   | _   | _   | 0   |   |   |   | _ | _ | _ | _ | _ | _ | _   |
| 1 |   |     |     |     | 0   |   |   | 0 | 0 | 0 |   |   |   |   |     |