Node-type-based load-balancing routing for Parallel Generalized Fat Trees

John Gliksberg (john.gliksberg@uvsq.fr)
Jean-Noël Quintin (jean-noel.quintin@atos.net)
Pedro Javier García (pedro-javier.garcia@uclm.es)

Atos (BuLL) & UVSQ & UCLM

HiPINEB (IEEE HPCA) 2018, Vienna
Saturday February 24th, 2018
Outline

Context

Heterogeneous clusters

Reindexing

Conclusions
Outline

Improving routing algorithms for fat trees
Outline

Context
- Parallel Generalized Fat Trees (PGFTs)
- Random routing for PGFTs
- Dmodk routing
- Smodk routing

Heterogeneous clusters
- Periodicity

Reindexing

Conclusions
Outline

Context
- Parallel Generalized Fat Trees (PGFTs)
- Random routing for PGFTs
- Dmodk routing
- Smodk routing

Heterogeneous clusters
- Periodicity

Reindexing

Conclusions
Context
Parallel Generalized Fat Trees (PGFTs)

Formula defines uplinks, downlinks and duplicate links for each level

\[PGFT(n; w_0, \ldots, w_{n-1}; u_0, \ldots, u_{n-1}; p_0, \ldots, p_{n-1}) \]

Figure: Example \(PGFT(3; 8, 4, 2; 1, 3, 2; 1, 2, 3) \)
Context
Parallel Generalized Fat Trees (PGFTs)

Benefits:
Context
Parallel Generalized Fat Trees (PGFTs)

Benefits:
- Deadlock-free routing algorithms
Parallel Generalized Fat Trees (PGFTs)

Benefits:
- Deadlock-free routing algorithms
- Low-radix switches
Benefits:

- Deadlock-free routing algorithms
- Low-radix switches
- High cross-bisectional bandwidth to number of switches ratio when pruning upper levels
Context
Parallel Generalized Fat Trees (PGFTs)

Benefits:
- Deadlock-free routing algorithms
- Low-radix switches
- High cross-bisectional bandwidth to number of switches ratio when pruning upper levels
- Fault tolerance
Outline

Context
- Parallel Generalized Fat Trees (PGFTs)
 - Random routing for PGFTs
 - Dmodk routing
 - Smodk routing

Heterogeneous clusters
- Periodicity

Reindexing

Conclusions
Random routing for PGFTs

- Choice among up-down shortest paths
Context
Random routing for PGFTs

- Choice among up-down shortest paths
- Works, deadlock free
Context
Random routing for PGFTs

- Choice among up-down shortest paths
- Works, deadlock free
- Uses all available resources
Context
Random routing for PGFTs

- Choice among up-down shortest paths
- Works, deadlock free
- Uses all available resources
- Never perfect, frequent congestion
Context
Random routing for PGFTs

Congestion metric: \(\min(src, dst) \)

(a) Minimal congestion

(b) Non-minimal congestion
Context
Random routing for PGFTs

Figure: Congestion metric example for random routing (under all-to-all traffic)
Outline

Context
Parallel Generalized Fat Trees (PGFTs)
Random routing for PGFTs
Dmodk routing
Smodk routing

Heterogeneous clusters
Periodicity

Reindexing

Conclusions
Context
Dmodk routing
Context
Dmodk routing

- Deterministic function
Context
Dmodk routing

- Deterministic function
- Coalesce routes to the same destination
Context
Dmodk routing

- Deterministic function
- Coalesce routes to the same destination
- Lowest congestion metric for all-to-all traffic
Figure: Congestion metric example for Dmodk (under all-to-all traffic)
Outline

Context
- Parallel Generalized Fat Trees (PGFTs)
- Random routing for PGFTs
- Dmodk routing
- **Smokd routing**

- Heterogeneous clusters
- Periodicity

Reindexing

Conclusions
Coalesce routes from the same source
Context
Smokd routing

- Coalesce routes from the same source
- Similar to Dmodek for all-to-all
Context
Smokd routing

- Coalesce routes from the same source
- Similar to Dmodk for all-to-all
- Difference of congestion in asymmetric traffic
Few destinations and many sources: Dmodk will probably fare better
Few sources and many destinations: Smodk will probably fare better
Outline

Context
- Parallel Generalized Fat Trees (PGFTs)
- Random routing for PGFTs
- Dmodk routing
- Smodk routing

Heterogeneous clusters
- Periodicity

Reindexing

Conclusions
Heterogeneous clusters

Actual traffic is not all-to-all but instead reflects usage of:

- Compute nodes
- I/O nodes
- Service nodes
- Management nodes
- FPGA, GPGPU nodes
Heterogeneous clusters

Existing algorithms do not take this into account. Oftentimes few ports are consistently congested, while the rest is underused.
Outline

Context
- Parallel Generalized Fat Trees (PGFTs)
- Random routing for PGFTs
- Dmodk routing
- Smodk routing

Heterogeneous clusters
- Periodicity

Reindexing

Conclusions
Heterogeneous clusters

Periodicity

Figure: Example heterogeneous topology; s=switch, p=port, n=node; nodes 1,2,5,7 are I/O nodes
Heteregeneous clusters

Periodicity

Figure: Dmodk periodicity collision example

s0.0p5 and s1.1p1 have $\min(src, dst) = 2$
Heteregogeneous clusters

Periodicity

Two I/O nodes had NIDs which collided after modulo (5 mod 2 = 7 mod 2)
Heterogeneous clusters

Periodicity

Figure: Dmodk congestion metrics on topology with all I/O nodes on periodic NIDs (under compute to I/O traffic)
Outline

Context
Parallel Generalized Fat Trees (PGFTs)
Random routing for PGFTs
Dmodk routing
Smodk routing

Heterogeneous clusters
Periodicity

Reindexing

Conclusions
Avoid periodicity issues by routing groups of nodes of the same type as if they were independent
In practice: inject grouped NIDs (gNIDs) instead of NIDs into existing Xmodk algorithms
Reindexing
Periodicity

Figure: Example topology with reindexed gNIDs
gNIDS 0–3 are I/O nodes
Reindexing

Periodicity

Figure: Example topology under Gdmodk routing with compute to I/O traffic
Figure: Gdmodk metrics on topology with all I/O nodes on periodic NIDs (under compute to I/O traffic)
Gsmodk behaves similarly, but symmetrically.
If the source set is close to all nodes, Gsmodk cannot improve much.
Outline

Context
Parallel Generalized Fat Trees (PGFTs)
Random routing for PGFTs
Dmodk routing
Smodk routing

Heterogeneous clusters
Periodicity

Reindexing

Conclusions
Conclusions

Cheap improvement (no hardware, little software)
Real-life experimentation?
Conclusions

Applicable to other routing algorithms
- If decisions rely on NIDs
- If resource allocation is mapped on NIDs
Conclusions

- Node type is good
Conclusions

- Node type is good
- Job placement is better!
Thank you
Any questions?