

Department of Computer Engineering

Analyzing topology parameters for achieving energy-efficient k-ary n-cubes

HiPINEB 2018

Francisco José Andújar Muñoz et al.

0/19

Outline

Introduction

Power model

System model

Evaluation

Conclusions and future work

Outline

Introduction

Power model

System model

Evaluation

Conclusions and future work

Introduction

- When the network is designed, we must search a trade-off between:
 - Network performance.
 - Economic cost \Rightarrow Deployment cost + Exploitation cost.
 - The exploitation cost greatly depends on energy consumption.
 - ▶ Greater performance ⇒ Greater energy consumption ⇒ Greater cost
- ▶ We must seek the most energy-efficient network:
 - The network that requires lower energy for doing the same job.
 - However, not every performance penalty is acceptable.

Energy-efficiency in torus topology

- Torus topology is widely used in supercomputers.
- What torus configuration is more energy-efficient? Given:
 - A fixed number of nodes.
 - The same bisection bandwidth in each compared network.

Energy-efficiency in torus topology

- Torus topology is widely used in supercomputers.
- What torus configuration is more energy-efficient? Given:
 - A fixed number of nodes.
 - > The same bisection bandwidth in each compared network.
- Two main possible configurations:
 - High-dimensional networks with a high number of low-degree switches.
 - Low-dimensional network with a low number of high-degree switches using link trunking.

- Configuration A:
 - 4x4x4 3D torus
 - No trunk links
 - 7-port switches
 - ▶ 64 routers.
 - Average distance: 3
 - Network diameter: 6
 - 448 network ports

- Configuration A:
 - 4x4x4 3D torus
 - No trunk links
 - 7-port switches
 - ▶ 64 routers.
 - Average distance: 3
 - Network diameter: 6
 - 448 network ports

- Configuration B:
 - 4x4 2D torus
 - 4 ports per trunk link
 - 20-port switches
 - 16 routers
 - Average distance: 2
 - Network diameter: 4
 - 320 network ports

- the same bisection bandwidth as A.
- 71.4% ports of configuration A...
- ... and then, lower power consumption.

- the same bisection bandwidth as A.
- 71.4% ports of configuration A...
- ... and then, lower power consumption.

• But
$$E = P * t$$
:

- the same bisection bandwidth as A.
- 71.4% ports of configuration A...
- ... and then, lower power consumption.
- But E = P * t:
 - B has lower diameter and average distance than A.
 - B has high-degree switches.

- the same bisection bandwidth as A.
- 71.4% ports of configuration A...
- ... and then, lower power consumption.
- But E = P * t:
 - B has lower diameter and average distance than A.
 - B has high-degree switches.
 - The number of ports affects the switch allocator performance:
 - Requires bigger (and slower) round-robin arbiter.
 - The allocator performance slightly decreases.

Allocator performance

4 ロ ト 4 緑 ト 4 差 ト 4 差 ト 差 の Q (や 5 / 19)

Energy vs performance

What network...

- …achieves the highest performance?
- …is the most energy-efficient?
- If the most energy-efficient network has not the greatest performance, is the performance penalty acceptable?

Energy vs performance

What network...

- …achieves the highest performance?
- …is the most energy-efficient?
- If the most energy-efficient network has not the greatest performance, is the performance penalty acceptable?
- To answer these questions, we need to:
 - Define a power consumption model.
 - Evaluate the networks by simulation.
 - Use the simulation results in the power model.

(日) (圖) (E) (E) (E)

Outline

Introduction

Power model

System model

Evaluation

Conclusions and future work

Initial hypotheses

- The switch power consumption increases linearly with the number of ports.
- Two states for the switch ports: wake-up (or turned on) and sleep (or turned off).
- Two states for the compute nodes: *running* or *idle*.
- Color guide:
 - Topology parameters.
 - Power model parameters.
 - Simulation statistics.
 - Metric estimated by the power model.

Port power model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Port power model

Port power model

$$W_{ports}^s = w_{Sports} + (1 - w_{Sports}) \times U_{ports}$$

$$W_{sw}^s = (1 - w_{ports}) + w_{ports} \times W_{ports}^s$$

<ロト < 部 > < 目 > < 目 > 目 の Q () 9/19

 $W_{sw}^s = (1 - w_{ports}) + w_{ports} \times W_{ports}^s$

$$W_{net} = \frac{1}{N_{sw}} \sum_{i=1}^{N_{sw}} W_{sw}^i$$

<ロト < 部ト < 目ト < 目ト = うへで 9/19

$$W_{sw}^s = (1 - w_{ports}) + w_{ports} \times W_{ports}^s$$

$$W_{net} = \frac{1}{N_{sw}} \sum_{i=1}^{N_{sw}} W_{sw}^i \times \frac{N_{ports}}{REF_{ports}} \times \frac{N_{sw}}{REF_{sw}}$$

9/19

Compute node power model

<ロト < 部 > < 言 > < 言 > こ > < 言 > こ > く ? > (?) 10 / 19

Compute node power model

<ロト < 部 > < 言 > < 言 > 言 の < や 10 / 19

Compute node power model

 $W_{nodes} = w_{Snodes} + (1 - w_{Snodes}) \times U_{cpu}$

<ロト < 部 > < 目 > < 目 > こ 2 の Q (C) 10 / 19

Cluster power model

Cluster power model Idle ЛC OFF Node Port 1 . . Port (n-2) Running INC Port (n-1) Node Switch ports Switch logic

 W_{nodes} W_{net} $(1 - w_{net})$ w_{net}

Cluster power model Idle IIC OFF Node Port 1 ٠ . Port (n-2) Running INC Port (n-1) Node Switch ports Switch logic $\frac{W_{nodes}}{(1 - w_{net})}$ W_{net} w_{net}

 $W_{cluster} = w_{net} \times W_{net} + (1 - w_{net}) \times W_{nodes}$

Cluster power model Idle NIC OFF Node Port 1 . Port (n-2) Running INC Port (n-1) Node Switch ports Switch logic W_{nodes} W_{net} $(1-w_{net})$ w_{net}

 $W_{cluster} = w_{net} \times W_{net} + (1 - w_{net}) \times W_{nodes}$

 $E_{cluster} = W_{cluster} \times RunTime$

Power model parametrization

Parameter	Value	
w_{Sport}	0.1	
w_{ports}	0.65	
w_{net}	0.15	
w_{Snodes}	Variable	

Outline

Introduction

Power model

System model

Evaluation

Conclusions and future work

・ロ ・ ・ 一部 ・ ・ 注 ト ・ 注 ・ う Q (* 12 / 19)

Switch architecture

- IQ switches
- Virtual cut-through
- Credit flow-control
- 3-stage allocator (based on Blue Gene allocator)
 - Round-Robin arbiter latency logarithmically increases with the number of ports
- Routing algorithm: fully-adaptive routing (Duato's protocol).
- Port bandwidth: 10 GBytes/s
- A trunk link:
 - Comprises several independent ports
 - Each port transmits independent packets
 - Power saving: the number of wake-up ports depends on trunk link utilization

Workload model

VEF traces:

- Traces obtained from MPI applications
- Self-related traces:
 - Each communication depends on a previous communication
 - The changes in the network are reflected in the execution time

(日) (圖) (E) (E) (E)

14/19

- Selected applications:
 - NAMD (smtv benchmark)
 - HPPC MPI Random Access
 - Graph500 benchmark
- Each trace has 512 MPI tasks

Case Studies

	64 nodes		256 nodes	
Topology	3D	2D	4D	3D
Dimensions	4x4x4	4x4	4x4x4x4	4x4x4
Num. Ports	7	20	9	28
Allocator latency	3	5	4	5
Port Aggregation	1	4	1	4
Num. Switches	64	16	256	64
Network Ports	448	320	2304	1792
Port Ratio	-	0.714	_	0.777

Outline

Introduction

Power model

System model

Evaluation

Conclusions and future work

64-node networks

256-node networks

<ロト < 部 > < 目 > < 目 > 目 > 目 の Q で 17/19

Outline

Introduction

Power model

System model

Evaluation

Conclusions and future work

Conclusions

Under low and medium traffic loads:

- ► No differences in performance.
- Trunk-link torus is more energy-efficient.
- Under high traffic loads:
 - Trunk-link torus has a significant performance penalty.
 - High-dimensional torus are more energy-efficient...
 - ... unless the compute nodes are very energy-proportional.

18/19

- In the trunk-link torus, the power-saving mechanism has:
 - No significant performance penalty.
 - Lower energy consumption.

Future Work

- Evaluation using more MPI applications.
- Evaluate more topologies:
 - Fat-tree
 - Dragonfly
- Simple trace scheduler to evaluate the topologies under a large set of applications instead of a single application.

Department of Computer Engineering

Analyzing topology parameters for achieving energy-efficient k-ary n-cubes

HiPINEB 2018

Francisco José Andújar Muñoz et al. fraanmu1@upv.es

19/19