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Introduction

◮ When the network is designed, we must search a trade-off
between:

◮ Network performance.
◮ Economic cost ⇒ Deployment cost + Exploitation cost.

◮ The exploitation cost greatly depends on energy consumption.
◮ Greater performance ⇒ Greater energy consumption ⇒

Greater cost

◮ We must seek the most energy-efficient network:
◮ The network that requires lower energy for doing the same job.
◮ However, not every performance penalty is acceptable.
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Energy-efficiency in torus topology

◮ Torus topology is widely used in supercomputers.

◮ What torus configuration is more energy-efficient? Given:
◮ A fixed number of nodes.
◮ The same bisection bandwidth in each compared network.
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Energy-efficiency in torus topology

◮ Torus topology is widely used in supercomputers.

◮ What torus configuration is more energy-efficient? Given:
◮ A fixed number of nodes.
◮ The same bisection bandwidth in each compared network.

◮ Two main possible configurations:
◮ High-dimensional networks with a high number of low-degree

switches.
◮ Low-dimensional network with a low number of high-degree

switches using link trunking.
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64-node network example

◮ Configuration A:
◮ 4x4x4 3D torus
◮ No trunk links
◮ 7-port switches
◮ 64 routers.
◮ Average distance: 3
◮ Network diameter: 6
◮ 448 network ports
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64-node network example

◮ Configuration A:
◮ 4x4x4 3D torus
◮ No trunk links
◮ 7-port switches
◮ 64 routers.
◮ Average distance: 3
◮ Network diameter: 6
◮ 448 network ports

◮ Configuration B:
◮ 4x4 2D torus
◮ 4 ports per trunk link
◮ 20-port switches
◮ 16 routers
◮ Average distance: 2
◮ Network diameter: 4
◮ 320 network ports
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64-node network example

◮ Configuration B has:
◮ the same bisection bandwidth as A.
◮ 71.4% ports of configuration A...
◮ ... and then, lower power consumption.
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64-node network example

◮ Configuration B has:
◮ the same bisection bandwidth as A.
◮ 71.4% ports of configuration A...
◮ ... and then, lower power consumption.

◮ But E = P ∗ t:
◮ B has lower diameter and average distance than A.
◮ B has high-degree switches.
◮ The number of ports affects the switch allocator performance:

◮ Requires bigger (and slower) round-robin arbiter.
◮ The allocator performance slightly decreases.
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Allocator performance
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Energy vs performance

◮ What network...
◮ ...achieves the highest performance?
◮ ...is the most energy-efficient?

◮ If the most energy-efficient network has not the greatest
performance, is the performance penalty acceptable?
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Energy vs performance

◮ What network...
◮ ...achieves the highest performance?
◮ ...is the most energy-efficient?

◮ If the most energy-efficient network has not the greatest
performance, is the performance penalty acceptable?

◮ To answer these questions, we need to:
◮ Define a power consumption model.
◮ Evaluate the networks by simulation.
◮ Use the simulation results in the power model.
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Initial hypotheses

◮ The switch power consumption increases linearly with the
number of ports.

◮ Two states for the switch ports: wake-up (or turned on) and
sleep (or turned off ).

◮ Two states for the compute nodes: running or idle.

◮ Color guide:
◮ Topology parameters.
◮ Power model parameters.
◮ Simulation statistics.
◮ Metric estimated by the power model.
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Switch power model
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Switch power model
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Compute node power model
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Cluster power model
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Cluster power model
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Power model parametrization

Parameter Value

wSport 0.1

wports 0.65

wnet 0.15

wSnodes Variable
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Switch architecture

◮ IQ switches

◮ Virtual cut-through

◮ Credit flow-control

◮ 3-stage allocator (based on Blue Gene allocator)
◮ Round-Robin arbiter latency logarithmically increases with the

number of ports

◮ Routing algorithm: fully-adaptive routing (Duato’s protocol).

◮ Port bandwidth: 10 GBytes/s

◮ A trunk link:
◮ Comprises several independent ports
◮ Each port transmits independent packets
◮ Power saving: the number of wake-up ports depends on trunk

link utilization
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Workload model

◮ VEF traces:
◮ Traces obtained from MPI applications
◮ Self-related traces:

◮ Each communication depends on a previous communication
◮ The changes in the network are reflected in the execution time

◮ Selected applications:
◮ NAMD (smtv benchmark)
◮ HPPC MPI Random Access
◮ Graph500 benchmark

◮ Each trace has 512 MPI tasks
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Case Studies

64 nodes 256 nodes

Topology 3D 2D 4D 3D

Dimensions 4x4x4 4x4 4x4x4x4 4x4x4

Num. Ports 7 20 9 28

Allocator latency 3 5 4 5

Port Aggregation 1 4 1 4

Num. Switches 64 16 256 64

Network Ports 448 320 2304 1792

Port Ratio – 0.714 – 0.777
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64-node networks
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256-node networks
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Conclusions

◮ Under low and medium traffic loads:
◮ No differences in performance.
◮ Trunk-link torus is more energy-efficient.

◮ Under high traffic loads:
◮ Trunk-link torus has a significant performance penalty.
◮ High-dimensional torus are more energy-efficient...
◮ ... unless the compute nodes are very energy-proportional.

◮ In the trunk-link torus, the power-saving mechanism has:
◮ No significant performance penalty.
◮ Lower energy consumption.
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Future Work

◮ Evaluation using more MPI applications.

◮ Evaluate more topologies:
◮ Fat-tree
◮ Dragonfly

◮ Simple trace scheduler to evaluate the topologies under a
large set of applications instead of a single application.
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