

DEPARTAMENTO DE SISTEMAS Informáticos

An Effective Queuing Scheme to Provide Slim Fly topologies with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing

Pedro Yébenes¹, Jesús Escudero-Sahuquillo¹,

Pedro J. García¹, Francisco J. Quiles¹, Torsten Hoefler²

1: University of Castilla – La Mancha, Spain ; 2: ETH Zurich, Switzerland

HiPINEB'17 - February 17th, 2017 – Austin, USA

Outline

- Motivation
- Slim Fly topology
- Proposal Description
- Evaluation
- Conclusion

Pedro Yébenes

- Interconnection networks are **key elements** in HPC systems and datacenters.
 - Thousands of processing and/or storage nodes (Exascale challenge).
 - Applications demand increasing computing power.
- The interconnection network may become the **system bottleneck** if not properly designed and configured.

Achieving high network performance is mandatory.

Sunway TaihuLight 41,000 nodes - Cores 10,649,600 **1st Top500** (November 2016)

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing **Pedro Yébenes**

Interconnection networks

- Network designers try to optimize the network resources.
- The lower average distance, the lower the resources needed.
 - High-radix switches available in the market.
- New topologies minimize the network diameter: Dragonfly, Flattened Butterfly, KNS, etc.
 - **Slim Fly**: a high-performance cost-effective network topology.

Congestion appearance

- The working zone may be near the **saturation point**.
 - Power management techniques may reduce network bandwidth.
- Applications traffic may lead to **hotspots**.

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing **Pedro Yébenes**

Head-of-Line (HoL) Blocking

- The real problem derived from congestion.
- Network performance may degrade significantly.

Queuing Schemes

- Several queues, supporting Virtual Channels (VCs), or Virtual Lanes (VLs) are used at each port to separate traffic flows, reducing the HoL-blocking produced among them.
- A static criterion is used to map packets to queues.

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing

Queuing Schemes

- Some schemes are topology agnostic:
 - **VOQnet**: one queue per each destination in the network
 - **VOQsw**: one queue per output port in the switch
 - **DBBM**: maps packets to queues using the formula:
 - Queue = Packet_destination % #Queues_per_Port
- However, the most efficient ones are tailored to a specific network topology and a specific routing algorithm:
 - Flow2SL, vftree for fat-trees.
 - **BBQ** for KNS topology.
 - H2LQ for Dragonfly.

Design a queuing scheme

- Tailored to Slim Fly topology using minimal path routing.
 - Deadlock freedom.
- Effectively reduce HoL blocking by using the lower amount of queues.

Outline

- Motivation
- Slim Fly topology
- Proposal Description
- Evaluation
- Conclusion

Slim Fly topology Benefits

- Network diameter is close to the theoretically optimal.
 - Connection pattern is based in the MMS graphs to ensure **diameter 2**.
- High bandwidth and resiliency.
- Low latency.
- Reduced cost and power consumption in comparison with other topologies.

M. Besta, T. Hoefler: Slim Fly: A Cost Effective Low-Diameter Network Topology. SC'14: pp. 348-359

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing Pedro Yébenes

Slim Fly topology Connection

- Not intuitive connection pattern:
 - Find a prime number *q*
 - Constructing the Galois field F_q
 - Constructing the *generator sets* X and X'

M. Besta, T. Hoefler: Slim Fly: A Cost Effective Low-Diameter Network Topology. SC'14: pp. 348-359

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing Pedro Yébenes

Slim Fly topology Connection

- Switches are labeled: $\{0,1\} \times F_q \times F_q$
 - 1. Switch $(o,x,y) \rightarrow (o,x,y')$ iff y y' in X
 - 2. Switch $(1,m,c) \rightarrow (1,m,c')$ iff c c' in X'
 - 3. Switch (o,x,y) \rightarrow (1,m,c) iff y = mx +c

M. Besta, T. Hoefler: Slim Fly: A Cost Effective Low-Diameter Network Topology. SC'14: pp. 348-359

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing Pedro Yébenes

Slim Fly topology Routing

• There are cycles in the channel dependency graph.

M. Besta, T. Hoefler: Slim Fly: A Cost Effective Low-Diameter Network Topology. SC'14: pp. 348-359

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking	Pedro Yébenes Feb 5 th , 2017 14
Reduction and Deadlock Freedom for Minimal-Path Routing	Austin, USA 14

Slim Fly topology

HoL-blocking problem

Slim Fly topology

HoL-blocking problem

Slim Fly topology

HoL-blocking problem

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing Pedro Yébenes

Feb 5th, 2017 Austin, USA

Outline

- Motivation
- Slim Fly topology
- Proposal Description
- Evaluation
- Conclusion

Benefits

- Slim Fly Two-Level Queuing (SF2LQ).
- Two **virtual networks** (VNs) consisting of disjoint sets of queues to prevent deadlocks:
 - **Standard** Virtual Network (SVN).
 - Escape Virtual Network (EVN).
- HoL-Blocking is reduced in both VNs by applying different and independent mapping policies.

SF₂LQ mapping policy

- At Standard Virtual Network (SVN):
 - SVC = (Destination/p)%#Standard_VCs
 - Maximum VCs: k' (number of ports connected to other switches)
- At Escape Virtual Network (EVN):
 - EVC= Destination%#Escape_VCs
 - Maximum VCs: *p* (number of ports connected to nodes)

SF₂LQ reducing HoL blocking

• 3 VCs in the SVN and 2 VCs in the EVN

SF₂LQ reducing HoL blocking

• 3 VCs in the SVN and 2 VCs in the EVN

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing

Pedro Yébenes

Feb 5th, 2017 Austin, USA **22**

SF₂LQ reducing HoL blocking

• 3 VCs in the SVN and 2 VCs in the EVN

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing

Pedro Yébenes

Feb 5th, 2017 Austin, USA

23

Powered by:

Aсэł

Outline

- Motivation
- Slim Fly topology
- Proposal Description
- Evaluation
- Conclusion

Evaluation Simulation Tool

OMNeT++-based simulator:

- Different topologies.
- Different routing algorithms.
- Different queuing schemes.
- Quality of Service support.

Pedro Yébenes, Jesús Escudero-Sahuquillo, Pedro J. García, Francisco J. Quiles: **Towards Modeling** Interconnection Networks of Exascale Systems with OMNeT++. PDP 2013

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing

Pedro Yébenes

Feb 5th, 2017 Austin, USA

Network Configurations

• Slim Fly configurations:

Name	q	k′	р	Ports per SW	Switches	Endnodes
SlimFly-19_10	13	19	10	29	338	3380
SlimFly-29_15	19	29	15	44	722	10830

Pedro Yébenes

Switch Architectures Evaluated

- Input Queued Switch Architecture.
- Input Queued Switch Architecture implementing Virtual Output Queues (VOQs):
 - Buffers are divided at the same time into VCs and VOQs.
 - Flow control is performed at VC level.

Queuing Schemes Evaluated

- **DLA-1+1**: 1 VC in the SVN + 1 VC in the EVN = 2 VCs
 - Basic scheme to avoid deadlocks. No HoL Blocking prevention.
- **DBBM-6+2**: 6 VCs in the SVN + 2 VC in the EVN = 8 VCs
- **DBBM-12+4**: 12 VCs in the SVN + 4 VC in the EVN = **16 VCs**
- **SF2LQ-6+2**: 6 VCs in the SVN + 2 VC in the EVN = 8 VCs
- **SF2LQ-12+4**: 12 VCs in the SVN + 4 VC in the EVN = **16 VCs**

• Uniform traffic:

- 100% traffic addressed to random destinations
- Low-order HoL blocking.
- Hot-Spot traffic:
 - 75% of endnodes generating traffic to random destinations.
 - 25% of endnodes generating traffic to one destination.
 - High-order HoL blocking.

Uniform Traffic Results

- Metric: Packet Latency vs. Normalized Efficiency
- 100% random traffic.

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing

30

Austin, USA

Uniform Traffic Results

- Metric: Packet Latency vs. Normalized Efficiency
- 100% random traffic.
- Virtual Output Queues.

Austin, USA

Reduction and Deadlock Freedom for Minimal-Path Routing

Hotspot Traffic Results

- Metric: Normalized efficiency vs. Generated traffic.
- 75% random traffic. 25% addressed to a hotspot endnode.

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing Pedro Yébenes

Hotspot Traffic Results

- Metric: Normalized efficiency vs. Generated traffic.
- 75% random traffic. 25% addressed to a hotspot endnode.
- Virtual Output Queues. \bullet

Reduction and Deadlock Freedom for Minimal-Path Routing

33 Austin, USA

Outline

- Motivation
- Slim Fly topology
- Proposal Description
- Evaluation
- Conclusion

- We have analyzed the **congestion dynamics** in Slim Fly networks using minimal-path routing.
- SF₂LQ is an **efficient** deadlock-freedom queuing scheme which reduces HoL blocking in Slim Fly topology.
- **Topology-aware queuing schemes**, like SF₂LQ, efficiently leverage the available queues to reduce HoL blocking.

Pedro Yébenes

Future work

- Testing SF₂LQ with traffic based on real application communication patterns.
- Extending SF₂LQ to fit adaptive routing.
- Implementing SF₂LQ in a real system built from **commercial networks** elements.

DEPARTAMENTO DE SISTEMAS Informáticos

An Effective Queuing Scheme to Provide Slim Fly topologies with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing

Pedro Yébenes¹, Jesús Escudero-Sahuquillo¹,

Pedro J. García¹, Francisco J. Quiles¹, Torsten Hoefler²

1: University of Castilla – La Mancha, Spain ; 2: ETH Zurich, Switzerland

HiPINEB'17 - February 17th, 2017 – Austin, USA

Slim Fly topology Description

- Symbols used to describe Slim Fly topology:
 - N: number of endnodes
 - p: number of endnodes attached to a switch
 - k': number of channels to other switches
 - k: switch radix (k'+p)

M. Besta, T. Hoefler: Slim Fly: A Cost Effective Low-Diameter Network Topology. SC'14: pp. 348-359

An Efficient Queuing Scheme to Provide Slim Fly with HoL Blocking Reduction and Deadlock Freedom for Minimal-Path Routing Pedro Yébenes

