
05-01-2017

Isolating job for security on
high-performance fabrics

Matthieu Perotin – Tom Cornebize

Context

▶ Some parallel jobs are too big for a single system…

▶ … but too confidential for a shared system

▶ The question is:

How to be absolutely sure that one job’s processes are not
communicating with processes from another job

▶ Critical with offloaded RDMA

▶ Such communications could be intentional tampering or the result of
programming errors

– No hypothesis is made regarding the attack

3

Introduction
Security is sometimes mandatory

▶ The need for isolation is not new

▶ When such critical jobs are to be run on shared cluster, an “air-gap” is created

– One part of the fabric is physically separated from the rest

– The job is run on the isolated part of the cluster

▶ Such an operation is particularly heavy

– It is a maintenance operation, that needs to be scheduled

– It results in two distinct fabrics that must be handled separately by the fabric
management

▶ However, the connexity of the fabric could be broken logically by acting at the
routing level

▶ Logical isolation must be dynamic and fast

– Done when the job is launched

4

How to isolate one job ?
Job isolation is a huge constraint

▶ BXI (Bull eXtreme Interconnect): Atos/Bull’s own 100Gb/s IC

▶ Wormhole routing (message based)

▶ BXI switches have per port destination based routing tables

▶ Every time a message enters an input port

– The destination NID (Node ID) is extracted from the message header

– The output port is chosen from the input port’s routing table

• f(destination NID) = output port

– Adaptive routing is possible

• If the chosen output port is overloaded, another port is chosen among a
list of possible ports

5

The BXI Interconnect
How is the routing working ?

Algorithms

▶ Act on the routing tables in the input ports

– f(destination NID) = {output port}

▶ Remove all entries from the set of output ports that would allow a message to
be forwarded to a node without a process from the same job

▶ Hypothesis: no shared nodes

▶ How would that work ?

1. Schedule the job

2. Modify the routing tables (isolation)

3. run job

4. Modify the routing tables (back to normal)

7

Job isolation
The idea behind the proposed solution

▶ Forbid incoming messages

– Invalidate green destinations

• switch a, ports 2 and 3

• switch b, ports 4, 5, 6 and 7

• switch c, ports 8, 9 and 11

8

Isolating jobs
A naïve algorithm

▶ Forbid outgoing messages

– Invalidate white destinations

• switch a, ports 0 and1

• switch c, port 10

• switch d, ports 12 to 15

▶ Works on any topology

▶ Independent from the routing algorithm

– And thus from re-routing operations

▶ Polynomial: O(n2)

▶ Can adding hypothesis lead to fewer invalidations ?

9

Job Isolation
A naïve algorithm

▶ Upper Layers algorithm

– Use the tree structure of the fat-tree and try to cut whole branches rather
than individual leaves

10

Working with fat-trees
Reducing the number of invalidated entries

11

Job isolation
The upper layer algorithm

12

Job isolation
The upper layer algorithm

13

Job isolation
The upper layer algorithm

14

Job isolation
The upper layer algorithm

▶ Naïve Algorithm: 1536 entries invalidated

▶ Upper Layer: 768

▶ Ratio: 0.5 (For this specially tailored, ideal case. Works at least as well.)

▶ The algorithm is still independent from the routing algorithm

Implementation

▶ 4 level, 64k nodes PGFT

▶ Job are randomly chosen union of sub-trees
of level 3

▶ Worst case, when a job is half the size of
the cluster

– naïve: 2.147G entries invalidated

– Upper Layers: 268M

16

Proof of concept implementation
Number of invalidated entries

▶ Naïve

– From 18MB to 51GB

▶ Upper Layers

– From 18MB to 8 GB

17

Proof of concept implementation
Implementation results – Memory consumption

▶ Naïve

– From 0.8s to 1649s

▶ Upper Layers

– From 0.8s to 214s

18

Proof of concept implementation
Implementation results – Runtime (12 Xeon cores)

Concluding remarks

▶ Two algorithms for logical isolation were presented

– One which is independent from routing algorithms and topologies

– Another which is independent from routing algorithms but specific to fat-trees

▶ The implementation results showed that dynamic isolation is possible with the
BXI interconnect

▶ Further studies will consider routing algorithm dependent isolation

– spoiler: good preliminary results

▶ A practical first step in scheduling aware routing for security

▶ Performance oriented isolation is a field that remains to be explored

– How can a lower bound on the performances for a job’s communication be
obtained ?

20

Concluding remarks
And Future works

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. June 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

Thanks

For more information please contact:
matthieu.perotin@atos.net

