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Context 



▶ Some parallel jobs are too big for a single system… 

▶ … but too confidential for a shared system 

▶ The question is: 

How to be absolutely sure that one job’s processes are not 
communicating with processes from another job 

▶ Critical with offloaded RDMA 

▶ Such communications could be intentional tampering or the result of 
programming errors 

– No hypothesis is made regarding the attack 
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Introduction 
Security is sometimes mandatory 



▶ The need for isolation is not new 

▶ When such critical jobs are to be run on shared cluster, an “air-gap” is created 

– One part of the fabric is physically separated from the rest 

– The job is run on the isolated part of the cluster 

▶ Such an operation is particularly heavy 

– It is a maintenance operation, that needs to be scheduled 

– It results in two distinct fabrics that must be handled separately by the fabric 
management 

▶ However, the connexity of the fabric could be broken logically by acting at the 
routing level 

▶ Logical isolation must be dynamic and fast 

– Done when the job is launched 
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How to isolate one job ? 
Job isolation is a huge constraint 



▶ BXI (Bull eXtreme Interconnect): Atos/Bull’s own 100Gb/s IC 

▶ Wormhole routing (message based) 

▶ BXI switches have per port destination based routing tables 

▶ Every time a message enters an input port 

– The destination NID (Node ID) is extracted from the message header 

– The output port is chosen from the input port’s routing table 

• f(destination NID) = output port 

– Adaptive routing is possible 

• If the chosen output port is overloaded, another port is chosen among a 
list of possible ports 
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The BXI Interconnect 
How is the routing working ? 



Algorithms 



▶ Act on the routing tables in the input ports 

– f(destination NID) = {output port} 

▶ Remove all entries from the set of output ports that would allow a message to 
be forwarded to a node without a process from the same job 

▶ Hypothesis: no shared nodes 

▶ How would that work ? 

1. Schedule the job 

2. Modify the routing tables (isolation) 

3. run job 

4. Modify the routing tables (back to normal) 
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Job isolation 
The idea behind the proposed solution 



▶ Forbid incoming messages 

– Invalidate green destinations 

• switch a, ports 2 and 3 

• switch b, ports 4, 5, 6 and 7 

• switch c, ports 8, 9 and 11 
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Isolating jobs 
A naïve algorithm 

▶ Forbid outgoing messages 

– Invalidate white destinations 

• switch a, ports 0 and1 

• switch c, port 10 

• switch d, ports 12 to 15 

 

 



▶ Works on any topology 

▶ Independent from the routing algorithm 

– And thus from re-routing operations 

▶ Polynomial: O(n2) 

▶ Can adding hypothesis lead to fewer invalidations ? 
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Job Isolation 
A naïve algorithm 



▶ Upper Layers algorithm 

– Use the tree structure of the fat-tree and try to cut whole branches rather 
than individual leaves 
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Working with fat-trees 
Reducing the number of invalidated entries 
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Job isolation 
The upper layer algorithm 
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Job isolation 
The upper layer algorithm 
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Job isolation 
The upper layer algorithm 
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Job isolation 
The upper layer algorithm 

▶ Naïve Algorithm: 1536 entries invalidated 

▶ Upper Layer: 768 

▶ Ratio: 0.5 (For this specially tailored, ideal case. Works at least as well.) 

▶ The algorithm is still independent from the routing algorithm 



Implementation 



▶ 4 level, 64k nodes PGFT 

▶ Job are randomly chosen union of sub-trees 
of level 3 

▶ Worst case, when a job is half the size of 
the cluster 

– naïve: 2.147G entries invalidated 

– Upper Layers: 268M 
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Proof of concept implementation 
Number of invalidated entries 



▶ Naïve 

– From 18MB to 51GB 

▶ Upper Layers 

– From 18MB to 8 GB 
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Proof of concept implementation 
Implementation results – Memory consumption 



▶ Naïve 

– From 0.8s to 1649s 

▶ Upper Layers 

– From 0.8s to 214s 
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Proof of concept implementation 
Implementation results – Runtime (12 Xeon cores) 



Concluding remarks 



▶ Two algorithms for logical isolation were presented 

– One which is independent from routing algorithms and topologies 

– Another which is independent from routing algorithms but specific to fat-trees 

▶ The implementation results showed that dynamic isolation is possible with the 
BXI interconnect 

▶ Further studies will consider routing algorithm dependent isolation 

– spoiler: good preliminary results 

▶ A practical first step in scheduling aware routing for security 

▶ Performance oriented isolation is a field that remains to be explored 

– How can a lower bound on  the performances for a job’s communication be 
obtained ? 
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Concluding remarks 
And Future works 
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