UNIVERSITY OF CASTILLA-LA MANCHA

Computing Systems Department

A case study on implementing virtual 5D torus networks using network components of lower dimensionality

HiPINEB 2017

Francisco José Andújar Muñoz et al.

0/21

Outline

Introduction

nDT torus topology

Building nDT torus using EXTOLL cards

Performance evaluation

Conclusions and future work

Outline

Introduction

nDT torus topology

Building nDT torus using EXTOLL cards

Performance evaluation

Conclusions and future work

Supercomputer systems

Many scientific problems cannot be addressed in a laboratory:

- Non-reproducible problems.
- Too dangerous experiments.
- Too expensive experiments.
- Different time constants for the systems and the experimenter.

► ...

Supercomputer systems

Many scientific problems cannot be addressed in a laboratory:

- Non-reproducible problems.
- Too dangerous experiments.
- Too expensive experiments.
- Different time constants for the systems and the experimenter.

<u>►</u> . . .

Supercomputing is the key to address these problems!

- Supercomputers are used in several scientific areas:
 - Medicine: Protein modelling involved in multiple diseases, as cancer, Alzheimer, etc.
 - *Meteorology*: Climate modelling and weather prediction.
 - Physics: Nuclear reactions, supernovae and black holes modelling, etc.
 - Automotive industry: Aerodynamics modelling.

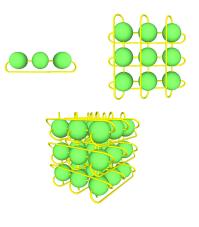
Interconnection networks

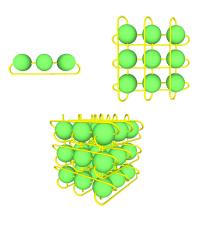
- Supercomputers can have thousands of computing nodes.
- The interconnection network is an essential component to communicate this huge amount of nodes!
- The network topology has a significant impact on the overall system performance.
- Torus topology is widely used in supercomputers:
 - Constant radix \Rightarrow Facilitates implementation.
 - Low Radix \Rightarrow Simpler and cheaper hardware.
 - Scalable \Rightarrow Linear cost of expansion.
 - Easy implementation of routing algorithms.

We can build a torus using:

► 2-port communication cards $\Rightarrow 1D$ torus.

We can build a torus using:


- ▶ 2-port communication cards
 ⇒ 1D torus.
- ↓ 4-port communication cards
 ⇒ 2D torus.


We can build a torus using:

- ▶ 2-port communication cards
 ⇒ 1D torus.
- ↓ 4-port communication cards
 ⇒ 2D torus.
- 6-port communication cards
 ⇒ 3D torus.

We can build a torus using:

- ▶ 2-port communication cards
 ⇒ 1D torus.
- ↓ 4-port communication cards
 ⇒ 2D torus.
- 6-port communication cards
 ⇒ 3D torus.
- ▶ ...
- ► 2n-port communication cards ⇒ nD torus.

イロト 不同下 イヨト イヨト

nD torus performance

The torus performance depends on the number of dimensions.

イロト 不得下 イヨト イヨト 二日

4 / 21

- The higher number of dimensions:
 - The lower distances among nodes.
 - Consider a 1024 PE network:
 - ▶ 32×32 2D torus: $d_{avg} = 16$
 - ▶ $16 \times 8 \times 8$ 3D torus: $d_{avg} = 8$
 - $4 \times 4 \times 4 \times 4 \times 4$ 5D torus: $d_{avg} = 5$
 - ► The higher network performance.

Increasing the torus performance

• The higher number of dimensions:

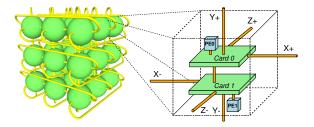
- The higher number of ports.
- The hardware complexity increases:
 - More expensive chip production.
 - Difficulty to implement some techniques (e.g. VOQ).
- More expensive hardware.
- Is it possible to increase the number of dimensions without using communication cards with more ports?

Increasing the torus performance

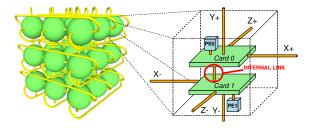
- The higher number of dimensions:
 - ► The higher number of ports.
 - The hardware complexity increases:
 - More expensive chip production.
 - Difficulty to implement some techniques (e.g. VOQ).
 - More expensive hardware.
- Is it possible to increase the number of dimensions without using communication cards with more ports?
- Idea: Combine several cards as a single node communication hardware.
 - Simplest case: to interconnect two cards by one port.

Outline

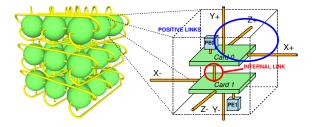
Introduction

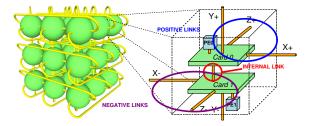

nDT torus topology

Building nDT torus using EXTOLL cards


Performance evaluation

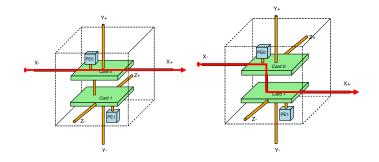
Conclusions and future work


・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ シ へ で
5/21


- ▶ Given 4-port cards, a 2D torus can be built...
- Or we can use one port per card for interconnecting two cards.
- There are still 6 ports to build a 6-port node.
- ► A 3D torus can be built using these nodes, and it is called 3D Twin (or just 3DT) torus.

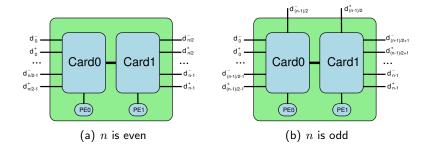
- ▶ Given 4-port cards, a 2D torus can be built...
- Or we can use one port per card for interconnecting two cards.
- There are still 6 ports to build a 6-port node.
- ► A 3D torus can be built using these nodes, and it is called 3D Twin (or just 3DT) torus.

- ▶ Given 4-port cards, a 2D torus can be built...
- Or we can use one port per card for interconnecting two cards.
- There are still 6 ports to build a 6-port node.
- ► A 3D torus can be built using these nodes, and it is called 3D Twin (or just 3DT) torus.


- ▶ Given 4-port cards, a 2D torus can be built...
- Or we can use one port per card for interconnecting two cards.
- There are still 6 ports to build a 6-port node.
- ► A 3D torus can be built using these nodes, and it is called 3D Twin (or just 3DT) torus.

- ► This idea can be generalized for *n* dimensions.
- nD Twin (nDT) torus topology.
- ▶ Node communication hardware: two (n + 1)-port cards.
 - There are a total of 2n + 2 ports.
 - One port of each card interconnects the two cards.
 - ▶ We refer to this port as "internal link".
 - ► There are 2*n* remaining ports to connect the node with the neighbour nodes.

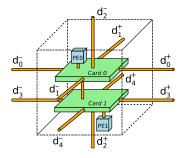
- ► This idea can be generalized for *n* dimensions.
- nD Twin (nDT) torus topology.
- ▶ Node communication hardware: two (n + 1)-port cards.
 - There are a total of 2n + 2 ports.
 - One port of each card interconnects the two cards.
 - We refer to this port as "internal link".
 - ► There are 2*n* remaining ports to connect the node with the neighbour nodes.


- 4-port cards $\Rightarrow 2D$ torus or 3DT torus.
- 6-port cards $\Rightarrow 3D$ torus or 5DT torus.
- 8-port cards $\Rightarrow 4D$ torus or 7DT torus.

Optimal node configuration

- The message latency depends on the node configuration.
- Crossing two internal cards, the latency increases!
- nDT torus: $\frac{\binom{2n}{n}}{2}$ configurations.
- ▶ Optimal configuration ⇒ Minimizes the number of paths that use the internal link.

Optimal configuration for nDT torus node


Optimal node configuration.

Optimal configuration for nDT torus node

Example

Given 6–port cards, we can build a 5DT torus and the optimal configuration is:

- The ports of d_0 and d_1 are connected to the first card.
- The ports of d_3 and d_4 are connected to the second card.
- ► The ports of *d*₂ are separated between the two cards.

DORT routing algorithm

- DORT implements the DOR algorithm in nDT torus.
- Each PE is identified by (n + 1) digits $\langle o_0, o_1, \dots, o_{n-1} | pe \rangle$:
 - $o_0, o_1, \ldots, o_{n-1} \Rightarrow d_0, d_1, \ldots, d_{n-1}$ coordinates.
 - $pe \Rightarrow$ Processing element identifier.
- First, a packet is routed from d_0 to d_{n-1} dimensions.
 - If the output port does not belong to the current card, the packet is routed to the internal link.
- When the packet arrives at the destination node:
 - Destination $PE = current PE? \Rightarrow$ route it to the NIC.
 - Destination PE = neighbour PE? \Rightarrow route it to the internal link.
- Virtual channels used in internal link to avoid deadlocks.

Outline

Introduction

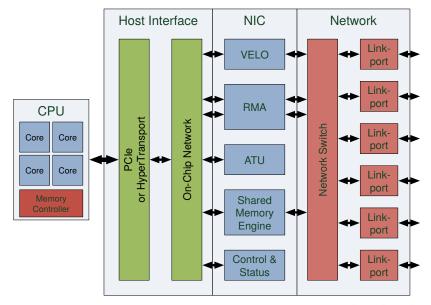
nDT torus topology

Building nDT torus using EXTOLL cards

Performance evaluation

Conclusions and future work

EXTOLL cards


- EXTOLL¹ is an interconnection network technology designed to achieve:
 - Very low latency.
 - A high bandwidth.
 - A high sustained message rate.
 - A high availability in large-scale networks (up to 64k nodes).

EXTOLL cards

- EXTOLL is an interconnection network technology designed to achieve:
 - Very low latency.
 - A high bandwidth.
 - A high sustained message rate.
 - A high availability in large-scale networks (up to 64k nodes).
- EXTOLL cards have 6 ports.
- EXTOLL cards support:
 - 3D torus.
 - Arbitrary topologies.
 - 5DT torus!!!

EXTOLL architecture

EXTOLL Network

- IQ switches:
 - Multiqueue-FIFO buffers.
 - VOQ-switch to minimize the HOL-blocking.
- Virtual cut-through.
- Fine-grain credit flow-control.
- iSLIP arbiter.
- Virtual channels:
 - To avoid deadlocks.
 - To provide adaptiveness.
- Four Traffic Classes (TCs) to provide QoS.
- Table-based routing:
 - Allows to implement arbitrary topologies.
 - Each TC can have its own routing function.

TS-DOR routing algorithm

- DORT not implementable using EXTOLL cards:
 - 4 deterministic VCs required in the internal link.
 - EXTOLL only has 2 deterministic VCs.
- New deterministic routing algorithm: Twin-source Dimension Order Routing (TS-DOR)
- Combines TCs and VCs to avoid deadlocks.
- Messages routed following different dimension orders.
- Dimension order determined by the source PE.

TS-DOR routing algorithm

The messages generated by PE0 are:

- Injected in TC0 or TC2.
- Routed from d_0 to d_4 .
- The messages generated by PE1 are:
 - Injected in TC1 or TC3.
 - Routed from d_4 to d_0 .
- Two VCs per TC required to avoid deadlock.
- Additional advantages:
 - Shorter paths than DORT.
 - Better load-balance than DORT.

Outline

Introduction

nDT torus topology

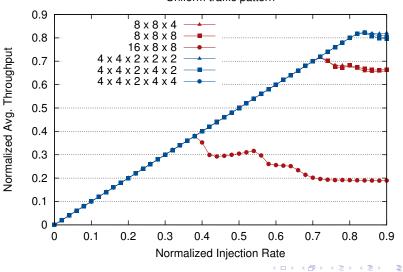
Building nDT torus using EXTOLL cards

Performance evaluation

Conclusions and future work

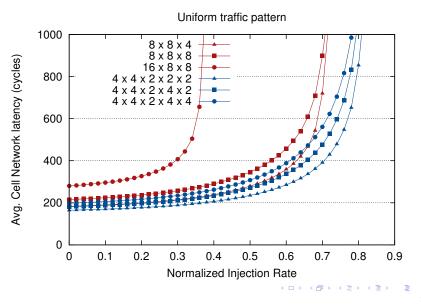
・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ の へ ()
17/21

Simulation model


- EXTOLLsim model
 - Models the main features of EXTOLL crossbar.
 - Routing algorithms:
 - ► 3D torus: fully-adaptive routing + DOR.
 - ▶ 5DT torus: TS-DOR algorithm.
- Uniform traffic pattern.
- Evaluated network sizes:

Number of PEs	3D torus	5DT torus
256	$8 \times 8 \times 4$	$4 \times 4 \times 2 \times 2 \times 2$
512	$8 \times 8 \times 8$	$4 \times 4 \times 2 \times 4 \times 2$
1024	$16 \times 8 \times 8$	$4 \times 4 \times 2 \times 4 \times 4$

Results:


- Normalized throughput (cells/cycle/NIC) vs Normalized injection rate (cells/cycle/NIC)
- Network cell latency vs Normalized injection rate (cells/cycle/NIC)

Normalized throughput

Uniform traffic pattern

Network cell latency

20 / 21

Outline

Introduction

nDT torus topology

Building nDT torus using EXTOLL cards

Performance evaluation

Conclusions and future work

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ Q (~ 20 / 21)

Conclusions and Future Work

Conclusions:

- To build an nDT torus is possible using the commercial hardware EXTOLL.
- TS-DOR: A new deadlock-free routing algorithms have been designed.
- We have proved the network performance is increased:
 - Network latencies are reduced.
 - The network accepts more traffic.
 - Lower throughput degradation using virtual channels.

Future work:

- Evaluation using other traffic patterns and MPI traffic.
- Performance comparison of DORT and TS-DOR algorithms.
- Adaptive routing for EXTOLL 5DT torus.

UNIVERSITY OF CASTILLA-LA MANCHA

Computing Systems Department

A case study on implementing virtual 5D torus networks using network components of lower dimensionality

HiPINEB 2017

Francisco José Andújar Muñoz et al. fandujar@dsi.uclm.es