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Outline
• Desiderata – Exascale network requirements

• Efficient fine-grain communication, cost effective bandwidth, resilience

• Topology – Engineering to optimize available technology

• Routing

• Flow control and congestion avoidance

• Error control

• Ordering

• The role of photonics

• System sketch
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Some History
MARS Router

1984
Torus Routing Chip

1985
Network Design Frame

1988

Reliable Router
1994

J-Machine
1992

Cray T3D
1992

Cray Black Widow
2006

Cray T3E 1995
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Intel iPSC/2
J-Machine
CM-5
Intel Paragon XP
Cray T3D
MIT Alewife
IBM Vulcan
Cray T3E
SGI Origin 2000
AlphaServer GS320
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Cray X1
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NVIDIA DGX-1
WORLD’S FIRST DEEP LEARNING SUPERCOMPUTER

170 TFLOPS
8x Tesla P100 16GB
NVLink Hybrid Cube Mesh
Optimized Deep Learning Software
Dual Xeon
7 TB SSD Deep Learning Cache
Dual 10GbE, Quad IB 100Gb
3RU – 3200W
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NVLINK – Enables Fast Interconnect, PGAS Memory

GPU

Memor
y

System Interconnect

GPU

Memor
y

NVLINK
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Fastest AI Supercomputer in TOP500
4.9 Petaflops Peak FP64 Performance
19.6 Petaflops DL FP16 Performance
124 NVIDIA DGX-1 Server Nodes

Most Energy Efficient Supercomputer
#1 on Green500 List
9.5 GFLOPS per Watt
2x More Efficient than Xeon Phi System

13 DGX-1 Servers in Top500

38 DGX-1 Servers for Petascale supercomputer

55x less servers, 12x less power vs CPU-only 
supercomputer of similar performance

DGX SATURNV
World’s Most Efficient AI Supercomputer

FACTOIDS
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Desiderata
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Exascale
System
Sketch
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Desiderata
• Scale – 105 endpoints

• Cost-effective bandwidth (injection and bisection) – B/s$

• Low latency (dominated by time-of-flight)

• Reliable exactly-once delivery – (BER < 10-21)

• Low overhead (latency and occupancy)

• Enable strong scaling

• Low-overhead shared-memory operations

• Highly concurrent operation
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Scale – ~105 Powerful Endpoints

• Each endpoint is a 16.4TFLOPS (DP) GPU with 4TB/s memory bandwidth
• 400GB/s injection bandwidth is 10:1 local memory to neighbor memory

• Pascal GP100 today is ~5:1  (750GB/s memory: 160GB/s NVLINK) 
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Cost-Efficient Bandwidth (B/s$)
• Network cost dominated by links (AOCs)

• Use minimum number of expensive links per route (1 dragonfly)

• Operate each link near capacity (flow-control and congestion avoidance)

• Make payload a high fraction of bits on the wire

• For small payloads (16B) as well as large
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The Need for PGAS
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Remote Load/Store

R ← LD[A]
Create
Request
Packet

Translate
A to Node

Deliver 
Packet

Translate
A to Offset

Read 
Memory

Create
Reply 
Packet

Deliver 
Packet

Receive 
Packet
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~105 Outstanding References per Endpoint

104 Threads

5µs 
Round-Trip 

Latency

400GB/s

2MB in flight
~105 outstanding 32B references
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Topology
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Cost of 100Gb/s

$500 $10 $5$50

100m 5m 1m 0.3m
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Dragonfly Topology
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Kim, J., et al. "Technology-Driven, Highly-Scalable Dragonfly Topology." ISCA 2008
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Adaptive Routing
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Fabric congestion

- Cause: low bisection bandwidth or load imbalance

- Solution: add bandwidth, improve load-balance using adaptive routing

Endpoint congestion

- Cause: endpoint bandwidth over-subscription

- Solution: reduce bandwidth demand by throttling traffic sources
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Sources of Congestion
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Progressive Adaptive Routing with Local misroute

DstSW SW

SW

SW

SW SW

SW

Global	
adapt	

Src SW

Local	
adapt	

Local
adapt

Source	Group

Intermediate	Group

Destination	Group

Singh, A., 2005. Load-balanced routing in interconnection networks (Doctoral dissertation, Stanford University).

Jiang, Nan, William J. Dally, and John Kim. "Indirect Adaptive Routing on Large Scale Interconnection 
Networks,” ISCA 2009
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Congestion Avoidance

LHRP
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Congestion Notification
150GB/s * 3us RTT = 450 KB inflight before first notification 

Reaction is too late, slow response time, large transient

Src Dst

Data Data+FECN

Switch

ACK + BECN

Threshold
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Last-Hop Reservation Protocol

Observation: preserve ejection channel bandwidth 
for data packets

Move the endpoint reservation scheduler to the 
last-hop switch

Messages are first transmitted speculatively

No congestion: speculative messages will arrive 
successfully

With congestion: speculative message is dropped 
by the  last-hop switch, reservation is sent back 
with the nack

Source Destination

N2+t2

M2

Last-hop
switch

Non-speculative	
packet

Speculative	
packet

Speculative	
packet	drop

Time

M1

A1

M2t2

SS DNetwork

Jiang, Nan, Larry Dennison, and William J. Dally. "Network endpoint congestion control for fine-grained 
communication," SC, 2015.
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Initial Congestion Response
40% uniform random + 60:4 Hotspot @ 20us – 4 flits/message

Hotspot Start
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Impact of Congestion on Network Performance
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Impact of Congestion Interference on Network Operations
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Interference, An Open Problem



32

Interference

F U T U R E   T E C H N O L O G I E S   G R O U P

Performance Variability

v Performance is highly variable at 
scale on Edison (Dragonfly)

v Actively investigating the cause 
with NERSC/Cray.

v Figure to the right shows the 
individual solves times obtained 
when solving 
§ the exact same problem
§ always using 4K sockets (and 32K 

cores)
§ with the same decomposition
§ within a single aprun (while loop in 

single execution)

v Average performance is 33% 
lower than best

49

Sam Williams
Designforward Tech Talk July 2014
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ADAPTIVE ROUTING

Minimal routing is insufficient for all traffic 
patterns

Two switches shares a single local channel

Two groups shares a single global channel

Utilize non-minimal network paths

“Bounce” off of a random intermediate 
switch/group

Creates resource sharing

Source of interference

VC0 VC1VC0 VC0Src VC0 Dst

Source	Group Destination	Group

VC2

Dst

VC3

VC4 VC5VC0 VC1Inj EjcSrc

Source	Group

Intermediate	Group

Destination	Group
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Adaptive Routing Interference

VC2

Dst

VC3

VC4 VC5VC0 VC1Inj EjcSrc

Source	Group

Intermediate	Group

Destination	Group

InjSrc DstEjc
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Bandwidth Partitioning

Multiple applications running on a 
network each in a partition 

Each partition

Monitor the fraction of intra-partition 
adaptive traffic on the global links 

Adjust the adaptive routing bias to 
maintain 50% fraction

Simpler alternative to physically 
partitioning network

Partitions are not perfectly isolated 

Subject to transient traffic variations

Adaptive routing reaction time

Group	0

Group	1

Group	2

Group	3

Group	4

Group	5

App0

App1

App2
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Error Control
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Error Control Problem
• ~106 links in an Exascale system

• Bandwidth of 2 x 1011 b/s each (total bandwidth of ~1017 b/s)

• Bit error rate of 10-4 to 10-12 (total error rate of 105-1013 errors/s)

• System wide error rate of 10-4 errors/s (1 week MTBF)

• Spec network error rate at 10-5 errors/s (order of magnitude less)

• Requires bit error rate of 10-22

37
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Layers of hardware protection

link

FEC
Block CRC

E2E CRC
Periodic Link CRCFailure causes bad

packet resend

Failure causes go-back-N
link-level retransmission Reduces 

retransmission
rate at cost of 

latency and power

Failure results in system
checkpoint restart
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Channel vs packet protocol

O O OO

O OO

Packet:

Channel:

overhead per packet

fixed, periodic overhead
(re-synchronizing is easy)

high overhead for
small packets

small packets (load/store/ack)
share overhead

good for
big packets
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Ordering
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Ordered Transfer Protocol
Lightweight Connection with Low-Overhead Setup and Teardown

Source
Reorder
Buffer Target Sender sends burst of REQs

(using a connection)

First REQ opens 
connection

Out-of-order REQs are held in 
re-order buffer until they can 
be forwarded in order

Periodic beacon packets 
suppress retransmissions

ACKs acknowledge delivery 
of REQs to target device

Connection is closed when 
no more waiting REQs

Sequence numbers order 
packets
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Synchronized Bulk Transfer

Source
Reorder
Buffer Target

Bulk data REQs are forwarded to 
target (possibly out of order)1-element reorder buffer holds 

back synchronization operation

Counter determines 
completion of bulk transfer

Minimal delay between completion 
of bulk data transfer and delivery 
of synchronization operation

First arriving REQ opens connection 
(allocates counter for ACKs)

REQ1..3: Bulk data
REQ4: Synchronization operation

Strict Ordering is not Required for many Producer/Consumer Exchanges
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The Role of Photonics
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Power/Bandwidth Density

146 lambdas @ 13Gb/s200 lambdas @ 8Gb/s

M. Bahadori, R. Polster, S. Rumley, Y. Thonnart, J.-L. Gonzalez-Jimenez, K. Bergman, "Energy-Bandwidth Design Exploration 
of Silicon Photonic Interconnects in 65nm CMOS,” IEEE Optical Interconnects Conference (OI) (May 2016)
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Photonic Dragonfly Concept

Router

Router

Router

Router

Passive Lambda 
Transpose

• 256 Groups
• 16 Fiber Bundles per group
• 16n wavelengths per fiber
• 16 Central AWGRs
• Much simpler cable 

management
• Technology not sufficiently 

mature for Exascale (2021)
• Maybe by 2025
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Overall System Sketch
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Recall Costs

$500 $10 $5$50

100m 5m 1m 0.3m
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8 GPUs/board
400GB/s each

16 bidir NVLINKs

8 switches/board
Flat bandwidth on 

board

Cabinet
• 128 GPUs, 50kW
• 16 GPU x 8 switch boards
• 400GB/s bidir per GPU

• 3.2TB/s per board
• 192 switches

• 8 per board
• Flat bandwidth on board
• 100GB/s at crosspoints

• 32 pairs
• 12.8TB/s aggregate

• 100GB/s per GPU within 
cabinet

• All connections electrical
4:1 2:1
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Group
• 1 or 2 cabinets
• Electrical Flex cables 

between cabinets
• 12.8TB/s between cabinets

• 512 NVLinks
• 4096 pairs
• 64 cables, 64 pairs each

• 256 NVLinks out back of 
each cabinet – 2 per GPU
• 50GB/s per GPU global 

bandwidth
• 6.4TB/s per cabinet

• Up to 513 groups
• 131,328 GPUs
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System Sketch
• Cost dominated by AOCs – 50GB/s per GPU $2K per endpoint

• Taper by leaving half the cables out – 25GB/s global bandwidth per GPU
• Limits maximum system size to 64k GPUs

• Routing – progressive adaptive routing with local misroute (6VCs per class)

• Flow control – flit-level flow control with LHRP

• Error control 
• Channel-level CRC for link

• Packet-level CRC for ETE

• FEC for optical cables only (where needed)

• Ordering – per packet or bulk sync

• PGAS support, with two-stage address translation
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Conclusion
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Conclusion
• An Exascale network is not business as usual

• Need fine-grain communication (PGAS) for strong scaling
• Two-stage address translation

• 105 outstanding references per endpoint

• Ordering as needed

• Cost-efficient bandwidth
• Topology driven by communication cost – Dragonfly

• High payload efficiency for small packets (32B)

• Congestion avoidance & adaptive routing allows links to operate near capacity

• Error control
• Channel-level, not packet-level CRC

• System sketch
• 8:2:1 – Board:Cabinet:Global bandwidth taper

• Cost is dominated by AOCs
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Backup – Not in main Talk



54


