New link arrangements for Dragonfly networks

Madison Belka Knox College
Myra Doubet Knox College
Sofia Meyers Knox College
Rosemary Momoh Knox College
David Rincon-Cruz Knox College (now Columbia Univ.)
David P. Bunde Knox College

Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links

Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
- Nodes attached to switches

Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
- Nodes attached to switches
- Switches form groups

- Group members connected w/ local edge (electrical)

Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
- Nodes attached to switches
- Switches form groups

- Group members connected w/ local edge (electrical)
- Each pair of groups connected w/ global edge (optical)

Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
- Nodes attached to switches
- Switches form groups

- Group members connected w/ local edge (electrical)
- Each pair of groups connected w/ global edge (optical)

Dragonfly parameters

- $p=$ number of nodes connected to a switch
- a = number of switches in a group
- $h=n u m b e r ~ o f ~ o p t i c a l ~ l i n k s ~ o n ~ a ~ s w i t c h ~$

- Number of groups g = ah+1

Which port connects to which group?

From original Dragonfly paper: Kim et al., ISCA 2008

Previously known: Three distinct global link arrangements

Absolute arrangement

Relative arrangement

Circulant-based arrangement

Arrangements defined in Camarero et al. ACM Trans. Architec. Code Optim., 2014.

Note:
IBM implementation (PERCS) uses absolute
Researchers who draw entire system in their papers use relative

Bisection bandwidth

- Minimum bandwidth between two equal-sized parts of the system
- Bandwidth for a particular bisection is the (weighted) number of edges crossing from one part to the other
- Minimize this over all bisections
- Tries to measure worst-case communication bottleneck in a large computation

Bisection bandwidth

- Minimum bandwidth between two equal-sized parts of the system
- Bandwidth for a particular bisection is the (weighted) number of edges crossing from one part to the other
- Minimize this over all bisections
- Tries to measure worst-case communication bottleneck in a large computation
- We treat local and global edges differently
- local edge weights to 1
- global edge weights to α

Arrangements give different bisection BW

[Hastings et al., Cluster 2015]

Bisection bandwidth as function of α for ($p, 4,2$)-Dragonfly

Flavor of results for large networks

[Hastings et al, Cluster 2015]

- Bisection bandwidth for relative arrangement:

$$
\begin{array}{ll}
(\mathrm{a} / 2)^{2} \mathrm{~g} & \text { if } a \bmod 4=0 \text { and } \alpha \text { is large } \\
\Theta(\alpha) & \text { if } a \bmod 4 \neq 0
\end{array}
$$

Flavor of results for large networks

[Hastings et al, Cluster 2015]

- Bisection bandwidth for relative arrangement:

$$
\begin{array}{ll}
(\mathrm{a} / 2)^{2} \mathrm{~g} & \text { if } \operatorname{a\operatorname {mod}4=0\text {and}\alpha \text {islarge}} \\
\Theta(\alpha) & \text { if } a \bmod 4 \neq 0
\end{array}
$$

- Globally connected component (GCC): A connected component of the network with only global links (ignoring local links)

Our question

- Can we make a global link arrangement that forms a single GCC? How does it perform?

Our question

- Can we make a global link arrangement that forms a single GCC? How does it perform?

Yes - we made 2 of them (Nautilus and Helix)
Their bisection bandwidth is

- generally better at high α
- and at least as good for low α

Nautilus global link arrangement

- Mark even switches (shaded). These go CW.

Nautilus global link arrangement

- Mark even switches (shaded). These go CW.
- Visit each switch in turn
- Add remaining edges to "next" groups in its direction
- Edges from group i connect to switch i \% a in destination group

Nautilus global link arrangement

- Mark even switches (shaded). These go CW.
- Visit each switch in turn
- Add remaining edges to "next" groups in its direction
- Edges from group i connect to switch i \% a in destination group

Nautilus global link arrangement

- Mark even switches (shaded). These go CW.
- Visit each switch in turn
- Add remaining edges to "next" groups in its direction
- Edges from group i connect to switch i \% a in destination group

Nautilus global link arrangement

- Mark even switches (shaded). These go CW.
- Visit each switch in turn
- Add remaining edges to "next" groups in its direction
- Edges from group i connect to switch i \% a in destination group

Nautilus global link arrangement

- Mark even switches (shaded). These go CW.
- Visit each switch in turn
- Add remaining edges to "next" groups in its direction
- Edges from group i connect to switch i \% a in destination group

Results on Nautilus arrangement

- Each pair of groups is connected by exactly 1 link and every node has h links

Results on Nautilus arrangement

- Each pair of groups is connected by exactly 1 link and every node has h links
- Closed form formula for which pairs of nodes are connected

Results on Nautilus arrangement

- Each pair of groups is connected by exactly 1 link and every node has h links
- Closed form formula for which pairs of nodes are connected
- 1 GCC is formed when $\mathrm{h}>2$ and
i. $a<h$,
ii. $a=h$, or
iii. $a=2 h$

Helix global link arrangement

- If h is even, divide links into $h / 2$ outgoing and h/2 incoming
- Outgoing links go to next h/2 groups, one switch higher

Helix global link arrangement

- If h is even, divide links into $h / 2$ outgoing and $h / 2$ incoming
- Outgoing links go to next $\mathrm{h} / 2$ groups, one switch higher

Helix global link arrangement

- If h is even, divide links into $h / 2$ outgoing and h/2 incoming
- Outgoing links go to next h/2 groups, one switch higher

Helix global link arrangement

- If h is even, divide links into $h / 2$ outgoing and h/2 incoming
- Outgoing links go to next h/2 groups, one switch higher
- If h is odd, the "middle links" of each switch go to uncovered groups

Helix arrangement forms 1 GCC

 (when $h \geq 4$)- Group i, switch 0 connects to switch 1 of group i+2

Helix arrangement forms 1 GCC

 (when $h \geq 4$)- Group i, switch 0 connects to switch 1 of group i+2
- Group i, switch 0 connects to same switch

Helix arrangement forms 1 GCC

 (when $h \geq 4$)- Group i, switch 0 connects to switch 1 of group i+2
- Group i, switch 0 connects to same switch
- Therefore all 0 switches are connected

Helix arrangement forms 1 GCC

 (when $h \geq 4$)- Group i, switch 0 connects to switch 1 of group i+2
- Group i, switch 0 connects to same switch
- Therefore all 0 switches are connected
- Therefore all switches are connected

Bisection bandwidth on small networks

($\mathrm{p}, \mathrm{a}, \mathrm{h})=($ nodes/switch, switches/group, links/switch)

Conclusions

- New arrangements
- Better at large α
- At least as good for small α
- Sometimes inferior at intermediate α
- The symmetry of Helix seems to make it preferable to Nautilus

Future work

- What is relationship between bisection bandwidth results and empirical network performance?
- Remaining cases for large α and exact values for general network sizes

Thanks!

dbunde@knox.edu

