

Providing Differentiated Services, Congestion Management, and Deadlock Freedom in Dragonfly Networks

Pedro Yébenes, Jesús Escudero-Sahuquillo, Pedro J. García, Francisco J. Alfaro, Francisco J. Quiles

University of Castilla - La Mancha

Outline

- Motivation
- Background
- Proposals description
- Evaluation
- Conclusions

Outline

- Motivation
- Background
- Proposals description
- Evaluation
- Conclusions

Motivation

Interconnection Networks

- Interconnection networks are key elements in HPC systems and datacenters.
 - Thousands of processing and/or storing nodes.
 - Applications need increasing computing power.
- The interconnection network may become the system **bottleneck** if not properly configured.

Achieving high network performance is mandatory.

Providing Differentiated Services, Congestion

Tianhe-2 (MilkyWay-2) 16000 nodes - Cores 3120000 TH-Express 2 **1st Top500** (November 2015)

March, 12th 2016

Motivation

Interconnection Networks

- Main design aspects of interconnection networks:
 - Topology
 - Routing Algorithm
 - Power consumption
 - Fault tolerance
 - Congestion control
 - Quality of service

Motivation

Problem Statement

- Minimal-path routing for Dragonfly networks is **not deadlock free** by default, requiring additional Virtual Channels (VCs) for deadlock freedom.
- Both congestion management and QoS can be provided by separating traffic flows into VCs.
- Thus, congestion management, QoS provision, and deadlock freedom require VCs for different purpose.
- There is not a joint and straightforward solution that offers these three functionalities at the same time.

Outline

- Motivation
- Background
- Proposals description
- Evaluation
- Conclusions

Dragonfly Topology

 Hierarchical high-performance topology consisting of a set of groups, each one composed of several switches where endnodes are attached.

 Low diameter, path diversity, high scalability, etc.

J. Kim, W. J. Dally, S. Scott, and D. Abts: **Technology-Driven, Highly-Scalable Dragonfly Topology**. SIGARCH 2008: vol. 36, pp. 77-88

Dragonfly Minimal-Path Routing

72-node Dragonfly network: a=4, h=2, p=2

J. Kim, W. J. Dally, S. Scott, and D. Abts: **Technology-Driven, Highly-Scalable Dragonfly Topology**. SIGARCH 2008: vol. 36, pp. 77-88

March, 12th 2016

Dragonfly Minimal-Path Routing

72-node Dragonfly network: a=4, h=2, p=2

J. Kim, W. J. Dally, S. Scott, and D. Abts: **Technology-Driven, Highly-Scalable Dragonfly Topology**. SIGARCH 2008: vol. 36, pp. 77-88

March, 12th 2016

Congestion

 Under congestion situations, network performance may degrade significantly.

 Head-of-Line blocking is the main problem derived from Congestion congestion. point **Congestion affects** also packets 3 belonging to other flows that are not contributing to congestion

March, 12th 2016

Queuing Schemes

- Several queues, supporting Virtual Channels (VCs), or Virtual Lanes (VLs) are used at each port to separate traffic flows, reducing the HoL-blocking produced among them.
- A **static criterion** is used to map packets to queues.

The most efficient queuing schemes are tailored to a specific **network topology** and a specific **routing algorithm**.

Hierarchical 2-Level Queuing (H2LQ)

 Queuing scheme tailored to Dragonfly topology with MIN-path routing algorithm.

P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia and F. J. Quiles, "Efficient Queuing Schemes for HoL-Blocking Reduction in Dragonfly Topologies with Minimal-Path Routing," CLUSTER 2015 IEEE, pp. 817-824.

Quality of Service

- Usually, QoS is based on separating into different VCs
 traffic with different priorities or from different applications.
- Sometimes, VCs priorities are managed by using the Weighted Round Robin (WRR) algorithm, which is implemented by a weighted table.
- VCs with higher weight and/or more entries in the table have more priority.
 Weighted Table

VC	Weight
0	3
1	3
0	3
2	1

Total Weight VCo = 6/10 (60%) Total Weight VC1 = 3/10 (30%) Total Weight VC2 = 1/10 (10%)

March, 12th 2016

Congestion Management + QoS

- CHADS: Combining HoL-blocking Avoidance and Differentiated Services.
- CHADS defines different **Service-Level Priorities** (SLPs) to identify the priority level of the applications.
- Each SLP is mapped to a **disjoint set of VCs**.
- A queuing scheme is used inside the set of VCs of the same SLP to prevent HoL blocking.
- Higher priority SLPs are mapped with more VCs.

P. Yebenes, J. Escudero-Sahuquillo, C. Gomez, P. J. Garcia F.J. Alfaro, and F. J. Quiles, "Combining Holblocking avoidance and differentiated services in high-speed interconnects," HiPC 2014

Congestion Management + QoS

 CHADS: Combining HoL-blocking Avoidance and Differentiated Services.

SLP	VC	Weigth
	0	2
CLDo	1	2
SLPo	2	2
	3	2
SLP1	3	1
	4	1

P. Yebenes, J. Escudero-Sahuquillo, C. Gomez, P. J. Garcia F.J. Alfaro, and F. J. Quiles, "Combining Holblocking avoidance and differentiated services in high-speed interconnects," HiPC 2014

Outline

- Motivation
- Background
- Proposals description
- Evaluation
- Conclusions

Basic Ideas

- Adapting CHADS to dragonfly networks.
- **SLPs** are also considered, each one assigned with different VCs.
- Congestion management inside each SLP by means of H2LQ.
- QoS provision by configuring Weighted Tables.
- **Deadlock freedom** using Escape VCs managed by different policies for configuring Escape Virtual Networks (EVNs):
 - Exclusive Escape Virtual Network (EEVN)
 - Common Exclusive Virtual Network (CEVN).

Exclusive Escape Virtual Network (EEVN)

- Each SLP has a Standard Virtual Network (SVN) and an EVN.
- Packets use the SVN by default but are assigned to the EVN for avoiding deadlocks.
- Packets from different SLPs never interact.

Exclusive Escape Virtual Network (EEVN)

- 2 SLPs
 - Total Weight: SLP o = 75%, SLP1 = 25%
- 5 VCs

Weighted Table

SLP	VN	VC	Weigth
CLDo			2
SLPo	SVN	1	2
SLPo	EVN	2	2
SIP1	SVN	3	1
SLP1	EVN	4	1

Common Escape Virtual Network (CEVN)

- Each SLP has a SVN.
- There is a single Common Escape VN (CEVN) shared by all the SLPs.
- Packets from different SLPs share VCs when they are in the CEVN.

Common Escape Virtual Network (CEVN)

- 2 SLPs
 - Total Weight: SLP o = 75%, SLP1 = 25%
- 5 VCs

Weighted Table

SLP	VN	VC	Weigth		
SLPo	SVN	0	3		
SLPO	2010	1	3		
SLP1	SVN	2	2		
SLP ₂	CEVN	3	1		
	CEVIN	4	1		

March, 12th 2016

Outline

- Motivation
- Background
- Proposals description
- Evaluation
- Conclusions

Simulation Tool

OMNeT++-based simulator:

- Different topologies.
- Different routing algorithms.
- Different queuing schemes.
- Quality of Service support.

Pedro Yébenes, Jesús Escudero-Sahuquillo, Pedro J. García, Francisco J. Quiles: **Towards Modeling**Interconnection Networks of Exascale Systems with OMNeT++. PDP 2013

Network Configurations

• 4096-node dragonfly network (a=12, h=6, p=6).

Traffic Patterns

- 3 applications, each one assigned with a different SLP (SLPo, SLP1, SLP2), generating synthetic traffic at a rate of 70% of the link bandwidth with two traffic patterns:
 - Uniform traffic.
 - Zipf traffic:
 - Models traffic patterns with preferred destinations.
 - Traffic pattern similar to the ones produced by the collective communication schemes.

L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker: **Web caching and Zipf-like distributions:** evidence and implications. INFOCOM '99: 126-134 vol.1

EEVN VCs Configurations

- Total weight per SLP in the Weighted Tables:
 - SLPo: 60%, SLP1: 30%, SL2: 10%
- Number of VCs for each SLP in EEVN (*EEVN-X* where *X* is the total number of required VCs).

SLPo		SLP1		SLP ₂		
Name	#SVCs	#EVCs	#SVCs	#EVCs	#SVCs	#EVCs
EEVN-54	12	6	12	6	12	6
EEVN-15	6	1	4	1	2	1
EEVN-8	3	1	1	1	1	1
EEVN-6	1	1	1	1	1	1

CEVN VCs Configurations

- Total weight per SLP in the Weighted Tables:
 - SLPo: 60%, SLP1: 30%, SL2: 10%
- Number of VCs for each SLP in CEVN (*CEVN-X* where *X* is the total number of required VCs).

Maron	SLPo	SLP1	SLP ₂	CEVN
Name	#SVC	#SVC	#SVC	#EVC
CEVN-42	12	12	12	6
CEVN-14	6	4	2	2
CEVN-8	3	2	1	2
CEVN-4	1	1	1	1

Results Uniform SLPo=70%, SLP1=70%, SLP2=70%

Metric: normalized throughput.

Distortion levels
show the expected
theoretical
throughput for a
given SLP,
according to the
network throughput
and the WT
configuration.

Providing Differentiated Services, Congestion

Results Zipf SLP0=70%, SLP1=70%, SLP2=70%

Metric: normalized throughput.

Distortion levels show the expected theoretical throughput for a given SLP, according to the network throughput and the WT configuration.

Outline

- Motivation
- Proposal description
- Evaluation
- Conclusions

Conclusions

Advantages

- CHADS technique has been updated for dragonfly networks.
- Differentiated services at network level, congestion management and deadlock freedom can be provided at the same time by means of EEVN and CEVN approaches.
- In general, CEVN is better than EEVN.
- The number of VCs configured has to be tightly with the weight configured in the Weighted Tables.

Conclusions

Future directions

- Analyzing these approaches with other routing algorithms suited to InfiniBand.
- Testing these approaches with other traffic patterns: application traces, adversarial, blocking collectives, etc.
- Exploring other configurations for Dragonfly networks.
- Exploring other approaches to better populate the weighted tables.

Providing Differentiated Services, Congestion Management, and Deadlock Freedom in Dragonfly Networks

<u>Pedro Yébenes</u>, Jesús Escudero-Sahuquillo, Pedro J. García, Francisco J. Alfaro, Francisco J. Quiles

University of Castilla - La Mancha

