

[simula . research laboratory]

Autors:

Roberto Peñaranda Cebrián Ernst Gunnar Gran Tor Skeie

María Engracia Gómez Requena Pedro Juan López Rodríguez

A New Fault-Tolerant Routing Methodology for KNS Topologies

Universitat Politècnica de València

- 1) Introduction
- 2) Related Work
- 3) Preliminaries
- 4) Fault-Tolerant Routing Methodology
- 5) Experimental Evaluation
- 6) Conclusions

- 1) Introduction
- 2) Related Work
- 3) Preliminaries
- 4) Fault-Tolerant Routing Methodology
- 5) Experimental Evaluation
- 6) Conclusions

1. Introduction

- The size of large supercomputers has been growing.

	J	•		Dmax	Dnook	Power
Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	
1	National University of Defense Technology China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3120000	33862.7	54902.4	17808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5	8209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	17173.2	20132.7	7890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8586.6	10066.3	3945
					0 10 0	

1. Introduction

-The high number of elements in an interconnection network heavily impacts the probability of having a failure in the system.

-To solve this:

- 1. To replicate all network elements, using them as spare components.
- 2. To modify the routing algorithm to be able to reach the destination nodes.

- 1) Introduction
- 2) Related Work
- 3) Preliminaries
- 4) Fault-Tolerant Routing Methodology
- 5) Experimental Evaluation
- 6) Conclusions

2. Related Work

- Fault-tolerant techniques based on routing configuration:
 - Network reconfiguration.
- Fault-tolerant routing algorithms.

2. Related Work

Fault-tolerant Routing algorithms

Different solutions for direct topologies:

- Requiring extra resources (virtual channels) depending on the number of tolerated faults or the number of dimensions of the topology.
- Disabling fault regions (with healthy nodes).
- Using Valiant routing, avoiding faults through the intermediate nodes.
- Without requiring extra resources (bad traffic balance).

- 1) Introduction
- 2) Related Work
- 3) Preliminaries
- 4) Fault-Tolerant Routing Methodology
- 5) Experimental Evaluation
- 6) Conclusions

3. Preliminaries

KNS Topology

3. Preliminaries

KNS Topology provides:

- High performance (low latency and high throughput).
- Reduced hardware cost and easy implementation.

- 1) Introduction
- 2) Related Work
- 3) Preliminaries
- 4) Fault-Tolerant Routing Methodology
- 5) Experimental Evaluation
- 6) Conclusions

New routing algorithm:

- For each source-destination pair without failures, we use Hybrid-DOR with minimal paths.
- If there is any fault, we use intermediate nodes (Valiant) using Hybrid-DOR in all subpaths .
- We need one extra virtual channel per each intermediate node to break deadlocks.

4. Fault-Tolerant Routing Methodology One Intermediate node

The intermediate node has to satisfy:

- I is reachable from S using Hybrid-DOR.
- **D** is reachable from **I** using Hybrid-DOR.

One Intermediate node

How many faults can it tolerate? (Considering only faults that doesn't physically disconnect the network).

One Intermediate node

How many faults can it tolerate? (Considering only faults that doesn't physically disconnect the network).

Being:

 T_{RS} the set of nodes that are reachable from S using Hybrid-DOR. T_D the set of nodes from which D is reachable using Hybrid-DOR.

One Intermediate node

How many faults can it tolerate? (Considering only faults that doesn't physically disconnect the network).

One Intermediate node

How many faults can it tolerate? (Considering only faults that doesn't physically disconnect the network).

4. Fault-Tolerant Routing Methodology One Intermediate node

How many faults can it tolerate? (Considering only faults that doesn't physically disconnect the network).

In general, for *n*-dimensional KNS networks, the routing algorithm with only one intermediate node is able to tolerate *n-1* failures.

Multiple Intermediate nodes

In this case, assuming that we have x intermediate nodes $(I_1, I_2, ... I_x)$, the intermediate nodes have to satisfy:

- *I*₁ is reachable from *S*.
- I_{i+1} is reachable from I_{i} , for 0 < i < x.
- **D** is reachable from I_x .

Multiple Intermediate nodes

In this case, assuming that we have x intermediate nodes $(I_1, I_2, ... I_x)$, the intermediate nodes have to satisfy:

- *I*₁ is reachable from *S*.
- I_{i+1} is reachable from I_{i} , for 0 < i < x.
- **D** is reachable from I_x .

For instance, for 2 intermediate nodes, $2 \times (n-1) + k - 3$ faults are tolerated for 3 or more dimensions, and $2 \times k - 1$ for 2 dimensions.

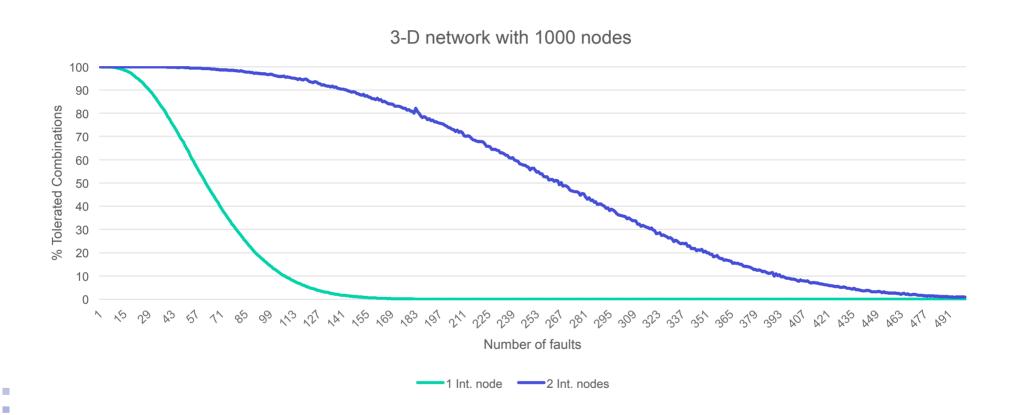
4. Fault-Tolerant Routing Methodology Other KNS configurations

This methodology can be extended to KNS configurations that use other indirect subnetworks like, for example, fat-trees. To do this:

- The intermediate nodes are used globally.
- Each subnetwork has its local methodology.

Direct routers will work normally as long as the subnets can avoid faults.

- 1) Introduction
- 2) Related Work
- 3) Preliminaries
- 4) Fault-Tolerant Routing Methodology
- 5) Experimental Evaluation
- 6) Conclusions


Divided into two parts:

- We analyze the number of failures which can be tolerated.
- We evaluate the performance of the methodology with different number of faults.

Fault analysis

Fault analysis

Performance analysis

2-D network with 1024 nodes

Performance analysis

3-D network with 1000 nodes

- 1) Introduction
- 2) Related Work
- 3) Preliminaries
- 4) Fault-Tolerant Routing Methodology
- 5) Experimental Evaluation
- 6) Conclusions

5. Conclusions

- We have proposed a new fault-tolerant routing algorithm for KNS topologies.
- It can tolerate a large number of faults without disabling any healthy node and without suffering a great fall in performance, needing only one extra virtual channel per intermediate node.
- For instance, the results show a degradation in performance of 1% for a 2D-network with 1024 nodes and 1% faulty links.

Thank you! ropeaceb@gap.upv.es

