Control the (1) Rate, (2) Route, (3) Globally/SDN, (4) Locally...?

Control in the t-dimension → Rate #1: IBA CCA

• IBTA's CM (aka CCA) already shaped

- 1. Load Sensor (LS): Q-occupancy;
- 2. Feedback (Fb): FECN; binary; single closed loop –Fb;
- 3. Source response function (SRF):
 - 1. down rate ~ FECN IA;
 - 2. up rate = timer based self recovery

Closely related to ECN/RED/TCP (and also DC-TCP/Sigcomm'10, and RoCEv2/Sigcomm'15)

Does CCA work? ...got a PhD to spare ...? ©

- Qualified "yes" => needs tuning
 - > easy for small fabrics w/ simple traffic, hard for others...
- Param *tuning* required per (1) fabric architecture and (2) traffic
- Narrow stability: CCA sensitivity to (1,2) and params

Rate #2: Ethernet QCN

- 1. Congestion point (CP)
 - Sampling: Q acupancy {pos,veloc} ~ 2D congestion vector
 - Derive feedback value (by applying PID and compensation, see next)
- 2. Feedback channel
 - Convey congestion notifications from CP **directly** to the culprit sources of "offending" traffic
 - Multibit Cong. Notifications contain congestion information, incl. a feedback value (copied by DC TCP)
- 3. Reaction point (RP)
 - Use rate limiters (RL) at the edge to shape flows causing congestion (also used by RoCEv2 et al.)
 - Adjust rates based on the multibit feedback values received from congestion points

OG Hotspot Performance

QCN's Parms: got another PhD to Spare? ©

Parameter	Value	Unit	Parameter	Value	Unit
ТСР					
buffer size	128	KB	TX delay	9.5	μ s
max buffer size	256	KB	RX delay	24	μs
default RTO	10	ms	timer quanta	1	μs
min RTO	2	ms	reassembly queue	200	seg.
RTO variance	20	ms			
ECN-RED					
min thresh.	25.6	KB	W_q	0.002	
max thresh.	76.8	KB	P_{max}	0.02	
QCN					
Q_{eq}	20 or 66	KB	fast recovery thresh.	5	
W_d	2		min. rate	100	Kb/s
G_d	0.5		active incr.	5	Mb/s
CM timer	15	ms	hyperactive incr.	50	Mb/s
sample interval	150	KB	min decr. factor	0.5	
byte count limit	150	KB	extra fast recovery	ena	bled
PFC					
min thresh.	80	KB	max thresh.	97	KB
Network hardwar	e				
link speed	10	Gb/s	adapter delay	500	ns
frame size	1500	в	switch buffer size/port	100	KB
adapter buffer size	512	KB	switch delay	100	ns

I wonder why "Nobody uses 'my' congestion controls"...?

Next, how about spatial control, i.e., Routing?

Comparative Evaluation of CEE-based Adaptive Routing

Daniel Crisan, Mitch Gusat and Cyriel Minkenberg

IBM Research GmbH, Zürich Research Laboratory

Rate or Route? Congestion Management vs. Adaptive Routing

- CM solves congestion by reducing injection rate
 - Useful for saturation tree congestion, where many "innocent" flows suffer because of backlog of some hot flows
 - Does not exploit path diversity
 - Typical data center topologies offer high path diversity
 - Fat tree, mesh, torus
- Adaptive routing (switch AR) basic approach
 - Allow multi-path routing
 - By default route on shortest path (latency)
 - Detect downstream congestion by means of QCN
 - In case of congestion
 - First try to reroute hot flows on alternative paths
 - Only if no uncongested alternative exists, reduce send rate

Extended generalized fat tree (XGFT) topology

- Multi-path: one path via each top-level switch
- Self-routing
- Usual static, oblivious routing method based on label of source or destination node to select path; can lead to significant contention
- Problem of assigning paths to connections with min. number of conflicts
 - > Non ddivious offline route optimization taking into account traffic pattern

Switch Adaptive Routing

- QCN feedback provide "congestion price"
- Algorithm [Minkenberg&Gusat'09]
 - switches snoop the CNs
 - based on feedback steer the traffic
- Advantages
 - Congestion avoidance
 - Use of alternative paths
- Oscillations possible
- Routing controlled by switches

IBM Research - Zürich

Rate/CM vs. Route/AR: Bernoulli Traffic Simulation

Source AR: R³C² Concept

Take advantage of CNMs at the source for adaptive load-balancing

- Congestion Point issues CNMs
 - Where is the hotspot?
 - How severe is the hotspot?
 - Source receives the CNMs
 - Identifies the most severe hotspots
 - Reroutes traffic around the hotspots
 - Splits flows and rate-limits subflows

- No overload: Deterministic single path
- Congestion: Activate additional paths
- Path activation: avoid hotspots
- Use RL along each path

Evaluation Methodology

- Venus + Dimemas simulator
- Traffic
 - Synthetic: permutations + hotspot
 - HPC Traces:
 - NAS: BT, CG, FT, IS, MG
 - WRF, NAMD, Liso, Airbus
- Model parameters
 - 10Gbps CEE with MTU = 1500B
 - QCN and PFC: 802 DCB settings
- Topology: 2-ary n-tree

IBM Research- Zurich

CG and FT communication patterns

Communication pattern

Traffic volume per node pair

HPC Traces: Hotspot

Rate or Route Control? Local or Global?

- Many topos offer abundant multipaths
 - Load balancing and reliability options
- Best routing: a qualified answer...
 - 1. D-mod-k deterministic: simple + no 000 delivery
 - 2. Random (-000) and hash: win under ideal DCN conditions, single prio, no failures or local overloads, w/ 'easy' traffic
 - 3. Adaptive (-000): best trade-off under realistic DCN scenarios... Performance benefits:

80% over Deterministic

40% over Random

- Rate or route
 → Dual Route & Rate control
 - Improved stability and performance
- Open: ordering and additional cost vs. hashing